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Abstract 11 
“Free sorting”, in which subjects are asked to sort a set of items into groups of “most similar” 12 
items, is increasingly popular as a technique for profiling sets of foods.  However, free sorting 13 
implies an unrealistic model of sample similarity: that similarity is purely binary (is/is not 14 
similar) and that similarity is fully transitive (similarities {A, B} and {B, C} imply {A, C}).  15 
This paper proposes a new method of rapid similarity testing—the “free-linking” task—that 16 
solves both problems: in free linking, subjects draw a similarity graph in which they connect 17 
pairs of samples with a line if they are similar, according to the subject’s individual criteria.  This 18 
simple task provides a more realistic model of similarity which allows degrees of similarity 19 
through the graph distance metric and does not require transitive similarity.  In two pilot studies 20 
with spice blends (10 samples, 58 subjects) and chocolate bars (10 samples, 63 subjects), free 21 
linking and free sorting are evaluated and compared using DISTATIS, 𝑅𝑅𝑅𝑅𝑅𝑅, and the graph 22 
parameters degree, transitivity, and connectivity; subjects also indicated their preferences and 23 
ease-of-use for the tasks.  In both studies, the first two dimensions of the DISTATIS consensus 24 
were highly comparable across tasks; however, free linking provided more discrimination in 25 
dimensions three and four.  𝑅𝑅𝑅𝑅𝑅𝑅 stability was equivalent for the two methods.  Graph statistics 26 
indicated that free linking had greater discrimination power: on average subjects made similarity 27 
groupings with lower degree, lower transitivity, and higher connectivity for free linking in both 28 
studies.  However, subjects did overall find free sorting easier and liked it more, indicating a 29 
higher cognitive difficulty of free linking.  The free-linking task, therefore, provides more robust, 30 
realistic similarity maps at the cost of higher panelist effort, and should prove a valuable 31 
alternative for rapid sensory assessment of product sets. 32 
 33 
1. Introduction 34 
Methods for rapidly identifying similarities and differences in sets of food products have become 35 
increasingly popular in sensory evaluation (Delarue, 2015; Valentin et al., 2012; Varela & Ares, 36 
2014).  In particular, “free sorting”, in which subjects are asked to sort a set of items (in this 37 
case, foods or beverages) into groups of “most similar” items is increasingly popular as a 38 
technique for profiling sets of foods (e.g., Lahne et al., 2018).  Free sorting presents several 39 
advantages: it does not require that subjects be trained, it is sensitive and stable with relatively 40 
low numbers of subjects (usually as low as 25 subjects), it can accommodate relatively high 41 
numbers of samples (as many as 20), and it has been shown to give product “maps” or 42 
“configurations” (through multivariate analyses) that bear a close resemblance to those from 43 
traditional and more work-intensive methods like Descriptive Analysis.  Furthermore, unlike 44 
other rapid methods like Projective Mapping or Flash Profiling (Dehlholm et al., 2012), free 45 
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sorting only requires that subjects make simple, holistic decisions of similarity or difference, 46 
rather than requiring a scaled degree of difference that may induce a higher cognitive load. 47 
 48 
However, a key disadvantage of free sorting is that the task of sorting samples makes some 49 
strong assumptions about the underlying similarities between the products that are being 50 
modeled.  Groups in free sorting are disjoint, meaning that no element can belong to two groups.  51 
Given samples A, B, and C there is no way that the same subject can create two similarity sets 52 
such as {A, B} and {B, C} without creating a superset {A, B, C}.  This simplifies the task for the 53 
subjects and reduces the time and amount of samples required (because retasting is minimized), 54 
but this restriction has two potentially undesirable consequences.  The first is that the same 55 
subject cannot represent different types or dimensions of similarity in the same sort: it is easily 56 
conceivable that A and B are similar in terms of one attribute, say, “sweetness”, while and A and 57 
C are similar in terms of another, say “appearance”.  It is quite easy to imagine real-world 58 
situations in which this occurs.  The second consequence is that similarity is necessarily modeled 59 
as fully transitive: if A is similar to B, and B is similar to C, then A must be similar to C, and 60 
furthermore the data can only indicate that all three samples are equally similar.  This is also 61 
clearly contrary to easily imagined real circumstances: perhaps A, B, and C are all “sweet”, but 62 
while A and B are equally sweet, C is only half as sweet.  Should a single subject be required to 63 
group these together? 64 
 65 
Two closely related alternatives have been suggested for the simple free-sorting task that address 66 
these issues: free multiple-sorts (Blanchard & Banerji, 2016; Dehlholm, 2015; Dehlholm et al., 67 
2012) and hierarchical free-sorts (Koenig et al., 2020, 2021).  The former modification asks 68 
subjects, after they have completed a simple free-sorting task, to repeat the task until they feel 69 
they have exhausted all possible grouping configurations (Dehlholm, 2015); the latter asks 70 
subjects, once they completed a simple free-sorting task, to continue making groups of groups 71 
until they cannot proceed further (Koenig et al., 2021).  Thus, free multiple-sorting solves the 72 
first problem highlighted above, and hierarchical free-sorting solves the second problem.  73 
However, neither approach solves both problems, and they both introduce problems of panelist 74 
motivation, in that they require a much more extensive data-collection procedure that will be 75 
discouraging for some subjects.  This is a more major problem when a large number of samples 76 
is used, as in Koenig et al. (2020), but difficulty and motivation problems are reported with as 77 
few as 18 complex samples sorted by taste (Kessinger et al., 2020).  In addition, the data 78 
collection for both methods is much more complicated and more poorly supported in practical 79 
data-management programs (based on the authors’ personal communications with major sensory 80 
and survey software providers in pursuit of these methods), which appears to have limited the 81 
adoption of either approach in academia and industry in favor of the simple free-sorting task.  82 
For example, Spencer et al. (2016) had to write custom software to support hierarchical free-83 
sorting, and authors as recent as Koenig et al. (2020, 2021) have used paper ballots because of 84 
the lack of software supporting hierarchical free-sorting, requiring extensive transcription of 85 
results. 86 
 87 
Therefore, in this manuscript we propose an alternative task to the free-sorting task, inspired by 88 
graph theory (Gross et al., 2014), which we term the “free-linking” task.  In the free-linking task, 89 
subjects are given a set of samples just as in free sorting, but rather than forming disjoint groups, 90 
subjects are asked to indicate, for each pair of samples, whether the samples are similar.  This 91 
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connect-the-dots interface was implemented in the SensoGraph system (Orden et al., 2019, 92 
Alcalá, ES) in order to support this task, in which subjects are asked to draw “links” between 93 
samples if they are similar (Figure 1).  However, a paper-based system for free linking would be 94 
no harder to implement than a paper-based simple free-sorting task. 95 
 96 

FIGURE 1 GOES HERE 97 
 98 
While the free-linking task solicits binary similarity data on a pair-wise basis for samples—two 99 
samples are either similar or they are not—it does not impose the disjoint, restrictive model of 100 
similarity implied by free sorting.  Given 3 samples A, B, and C it is possible for a subject to 101 
indicate, pairwise, that there are similar pairs {A, B} and {B, C} without indicating that A and C 102 
are directly similar.  Put another way, the free-linking task asks each subject to draw their own 103 
similarity graph for the samples (Lahne, 2020; Orden et al., 2019, 2021).  Unlike previous graph-104 
based approaches to similarity in food products, where just the presence or absence of a 105 
connection was considered, in free linking we make use of the graph distance between samples 106 
as a basis for a dissimilarity matrix for further analysis (Chartrand & Zhang, 2014).  In the 107 
example above, distance(A, B) = distance(B, C) = 1, while distance(A, C) = 2. This allows the 108 
analyst to infer from a single subject’s data that, for the example above, there might be some 109 
shared similarity between A and C without the link {A, C} actually being drawn.  This same 110 
change also addresses the second problem with simple free-sorting: subjects can now indicate 111 
pairwise whether samples are similar, but because there are not larger similarity groups (e.g., {A, 112 
B, C} in free sorting) it is not required that all samples that are connected be similar in the same 113 
way.  This allows more flexibility for a subject’s holistic similarity judgments (Figure 2; see also 114 
Figure 3 for details on the dissimilarity). 115 
 116 

FIGURE 2 GOES HERE 117 
 118 
The free-linking task can be analyzed by the same tools that exist for the free-sorting task: 119 
dimensionality reduction (through MDS, DISTATIS, and other approaches) and graph-based 120 
approaches like Sorting Backbone Analysis.  This allows analysts used to free sorting to easily 121 
employ free linking, and for direct comparison of results.  122 
 123 
Therefore, it is reasonable to hope that the free-linking task will provide results that are 124 
comparable to free-sorting in terms of ease of deployment and data collection, but might allow 125 
for more realistic and detailed results.  In particular, the lack of forced memberships to a group 126 
should allow for easier distinction among similar but not identical samples—that is, a more 127 
multidimensional structure of similarity and difference. In order to investigate the utility of the 128 
free-linking task, we report the results of two pilot studies in which subjects used both free 129 
sorting and free linking to report their perceptions of different food products.  In both pilot 130 
studies subjects completed both free-sorting and free-linking tasks for the same samples in a 131 
counterbalanced order.  In the first study, subjects evaluated 10 blends of 4 dried spices 132 
(cinnamon, turmeric, pepper, and cardamom) for similarity by aroma.  In the second study, 133 
subjects evaluated 10 commercial chocolate samples for similarity by taste.  We hypothesized 134 
that the overall similarity configuration should be similar between the two methods, and that the 135 
results of the two methods should be equally stable, but that the free-linking results would 136 
provide more realistic, multidimensional models of similarity, which should be evident in 137 
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parameters for the graphs derived from the similarity measurements as well as in visualizations 138 
from DISTATIS. 139 
 140 
2. Materials and Methods 141 
The two studies reported were very similar in most details besides sample type, and so the basic 142 
information distinguishing the studies is given below, followed by details on methodology and 143 
analysis that were the same for both studies. 144 
 145 
2.1. Study 1–Spice sorting 146 
Study 1 was conducted in November and December of 2019, and used spices and spice blends as 147 
stimuli.  Sample details are given in Table 1.  All spices were purchased at Kroger (Blacksburg, 148 
VA, see Table 1).  Samples were presented to subjects in foil-wrapped glass vials in order to 149 
avoid visual discrimination, and evaluation was entirely orthonasal.   150 
 151 
A total of N = 58 subjects (38 female, 20 male, average age 29 years old) participated in Study 1.  152 
Subjects were recruited from the Virginia Tech/Blacksburg community.  Subjects were not 153 
trained sensory panelists (e.g., for Descriptive Analysis), but some had participated in previous 154 
untrained sensory tests at Virginia Tech.  Subjects received no compensation, but were given 155 
snacks after completing Study 1. 156 
 157 
2.2. Study 2–Chocolate sorting 158 
Study 2 was conducted in November of 2020, and used commercial chocolate bars as stimuli.  159 
Sample details are given in Table 1.  All chocolate bars were purchased at Kroger (Blacksburg, 160 
VA, see Table 1).  Samples were presented in souffle cups with the bars’ identifying details (e.g., 161 
logos) effaced, in natural light, and evaluation was by taste and retronasal flavor.   162 
 163 
A total of N = 63 subjects (49 female, 14 male, average age 34 years old) participated in Study 2.  164 
Subjects were recruited from the Virginia Tech/Blacksburg community.  Subjects were not 165 
trained sensory panelists (e.g., for Descriptive Analysis), but some had participated in previous 166 
untrained sensory tests at Virginia Tech, including some who had participated in Study 1.  167 
Subjects received no compensation, but were given snacks after completing Study 2. 168 
 169 

TABLE 1 GOES HERE 170 
 171 
2.3. Overall study design 172 
Both studies used the same overall design.  Subjects were recruited to participate in free-linking 173 
and free-sorting of the same samples.  In order to obtain within-subjects data, subjects were 174 
randomly assigned one of the two tasks first, then took a short break, then completed the other of 175 
the two tasks, then completed a short survey that asked them about their perceptions of the tasks 176 
and some basic demographic details.  In both free-sorting and free-linking studies, subjects were 177 
seated at tables with a 36” x 36” workspace available and allowed to organize their samples 178 
spatially prior to entering their judgments into the data-collection software. 179 
 180 
2.4. Free-sorting task 181 
In the free-sorting task, subjects received all 10 samples at the same time in a randomized order.  182 
Sorting data was collected using the Compusense Cloud (Guelph, ON) system.  Subjects were 183 
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prompted to “sort into groups based on similarities”.  They were informed that there was no right 184 
answer, and told that they could make any number of groups between two (2) and nine (9), with 185 
as many samples as they chose in each group. 186 
 187 
2.5. Free-linking task 188 
In the free-linking task, subjects received all 10 samples at the same time in a randomized order, 189 
positioned as the vertices of a regular polygon (see Figures 1 and 2).  Linking data was collected 190 
using the SensoGraph (Orden et al., 2019, Alcalá, ES) system.  Subjects were prompted to “join 191 
with a line those pairs of products you consider similar, dragging from one to the other with the 192 
finger or the mouse” (see Figure 1).  The codes presented on the screen for the SensoGraph 193 
interface were given in random order for each subject.  Subjects were able to remove lines they 194 
had previously made (in case of mistakes or revisions in judgment) before submitting their 195 
answers.   196 
 197 
2.6. Data Analysis 198 
Results from both free sorting and free linking were analyzed in parallel in order to compare the 199 
results of the method.  This parallelism is enabled by the data structure provided by both 200 
methods: the dataset for each analysis is an 𝑁𝑁 × 𝐾𝐾 × 𝐾𝐾 array of (dis)similarity matrices, where 𝑁𝑁 201 
is the number of subjects and 𝐾𝐾 is the number of samples.  In free sorting, each 𝐾𝐾 × 𝐾𝐾 slice is 202 
composed by cell entries 𝑎𝑎𝑖𝑖𝑖𝑖 which are binary (either 0 or 1), representing whether, for the 203 
current subject, samples 𝑖𝑖, 𝑗𝑗 were sorted together. The raw data is a similarity measure in which a 204 
1 indicates similarity through group membership, and the dissimilarity matrix, which is obtained 205 
by subtracting every entry from 1, can be treated as binary distance and is analyzed via MDS or 206 
DISTATIS (Abdi et al., 2007).  In free linking, the graph drawn by the current subject provides a 207 
graph distance between each pair of samples i and j, as an integer between 1 (if the connection 208 
{i, j} is present) and ∞ (if there is no path between i and j on the graph). The raw graph distance 209 
is the number of edges comprising the shortest path between the two pairs of samples in the 210 
graph (see Figures 2 and 3).  For the dissimilarity matrix actually analyzed by DISTATIS we 211 
adapt the cophenetic dissimilarity from Koenig et al. (2021, see Figures 2 and 3): the 212 
corresponding cell entry 𝑎𝑎𝑖𝑖𝑖𝑖 of the 𝐾𝐾 × 𝐾𝐾 slice is defined as the subtraction from 1 of the inverse 213 
of the graph distance between i and j (defining 1/∞ as 0, and setting a minimum of 0 for 214 
dissimilarity of a sample with itself or with samples to which it is directly linked), so that the cell 215 
entries 𝑎𝑎𝑖𝑖𝑖𝑖 are no longer binary but range in the interval [0, 1], with larger values indicating 216 
lower similarity and smaller values standing for higher similarity.  The diagonal of the matrix is 217 
set to 0, indicating that all samples are identical with themselves as would be expected for a 218 
distance matrix. 219 
 220 

FIGURE 3 GOES HERE 221 
 222 
Data were first analyzed by DISTATIS in order to compare consensus similarity configurations 223 
for samples across methods (Abdi et al., 2007).  Confidence ellipses were generated through 224 
bootstrapping (Beaton et al., 2013).  A key property of any rapid sensory method is how well 225 
samples and groups of samples are distinguished: this is clearly related to (but also not identical 226 
to) discrimination ability for the method.  Examination of product separation on the first four 227 
DISTATIS axes for both methods via actual observations as well as bootstrapped confidence 228 
intervals were considered as evidence.  Choice of 4 axes for examination (out of a possible 10 for 229 
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each sample) were motivated by examination of scree plots for the DISTATIS 𝑺𝑺+ matrices (Abdi 230 
et al., 2007, not shown) as well as by general practice in industry and the literature for 231 
“significant dimensions” for interpretation. 232 
 233 
The stability of results for a given number of subjects—that is, the required number of subjects—234 
for each method was evaluated through a bootstrapping approach to simulate panels of different 235 
sizes and compare these simulated results to the actual, observed results.  Specifically, 236 
generalized stability, termed 𝑅𝑅𝑅𝑅𝑅𝑅 by Blancher et al. (2012), was calculated for free sorting and 237 
free linking: bootstrapped samples of subjects, of sizes 2 to N (where N is the number of subjects 238 
in the particular study) were drawn (with i = 100 replicates at each sample size), and the average 239 
𝑅𝑅𝑅𝑅 between the DISTATIS 𝑭𝑭 (factor score) matrices from the bootstrap sample and the full 240 
dataset was calculated at each sample size.  Blancher et al. (2012) recommend that stability can 241 
be considered achieved at the number of subjects for which the bootstrapped average 𝑅𝑅𝑅𝑅𝑅𝑅 242 
exceeds 0.95. 243 
 244 
Graph theory was also used to evaluate whether individual subjects’ free-sorting and free-linking 245 
groupings were in fact different.  For sorting, each individual’s 𝐾𝐾 × 𝐾𝐾 slice was treated as the 246 
(symmetric) adjacency-matrix representation of an undirected graph (Gross et al., 2014).  For 247 
linking, the undirected graph drawn by each individual was used. In each subject’s graph, the 248 
nodes represent the samples, and an edge between two nodes indicates that the subject sorted or 249 
linked two samples as similar (Lahne, 2020; Orden et al., 2019).  This graph representation 250 
provides several simple parameters that give insight into the similarity structure.   251 
 252 
The degree of each node indicates how many edges are incident to it (Gross et al., 2014); thus, in 253 
sorting or linking higher degree for a node means the corresponding sample was considered 254 
similar to more other samples.  Comparison of average degree per subject and sample for each 255 
method gives an indication of discrimination capacity: higher average degree indicates less 256 
discrimination between samples, as subjects consider more samples similar. 257 
 258 
The transitivity on triads (Arney & Horton, 2014) is the fraction indicating, for the total number 259 
of node triads A, B, C with connections {A, B}, {B, C}, how many of them also contain the 260 
connection {A, C}. In the literature this is also called the graph “clustering coefficient” 261 
(Kolaczyk & Csárdi, 2014).  In terms of the sorting and linking tasks, this is a measure of the 262 
likelihood that similarities {A,B} and {B,C} imply that similarity {A,C} also exists; when 263 
transitivity is higher it may indicate a lower discrimination capability.   264 
 265 
The average connectivity of a graph (Beineke et al., 2002) is a parameter that measures, in each 266 
subject’s results, the average over all pairs of nodes A and B, how many independent paths 267 
connect A and B.  In the context of sorting and linking, lower average connectivity will be 268 
associated with more disjoint groups, which is an indicator of less robust or realistic models of 269 
similarity.  270 
 271 
Subjects’ preferences for method were evaluated for each study using simple contingency-table 272 
measures, and their opinions of the sorting and linking tasks’ ease of use and enjoyability were 273 
evaluated using repeated measures ANOVA.   274 
 275 
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Data analyses were conducted in R (version 4.0.2).  Code for analyses is available from the 276 
corresponding author upon request. 277 
 278 
2.7. Ethics statement 279 
All research methods were reviewed and approved by the Virginia Tech Human Research 280 
Protection Program (IRB # 19-1030). 281 
 282 
3. Results 283 
3.1. Product configurations (via DISTATIS) 284 
The overall DISTATIS results for both the spice samples (Study 1) and the chocolate samples 285 
(Study 2) are quite similar (Figures 4 and 5).  In the first 2 dimensions of the DISTATIS 286 
solutions the configurations of samples are almost identical, although it is worth noting that the 287 
derived distances among samples in the chocolate study are larger (Figure 5).  However, for both 288 
studies it is apparent that the 3rd and 4th dimensions of the solution contain more valuable 289 
discrimination information for free linking than for free sorting.  In each case, more samples are 290 
clearly discriminated (as can be seen from non-overlapping confidence ellipses) by subjects 291 
using free linking than by subjects using free sorting.   292 
 293 

FIGURE 4 GOES HERE 294 
 295 
The same basic product differences are identified by both methods, but with better resolution 296 
through free linking.  For the spices, the first dimension separates cinnamon-containing mixes 297 
from the rest of the samples, while the second dimension separates cardamom-containing mixes 298 
(in both analyses the cinnamon+cardamom mixture falls in between these groups, with a stronger 299 
attraction to the cardamom region on the second axis).  The third dimension for both studies 300 
separates pepper from the remaining samples, but with free linking it is also possible to infer that 301 
pepper is being directly opposed to turmeric-containing samples (Figure 4).  In the fourth 302 
dimension, two samples that both contain turmeric are opposed: cardamom+turmeric and 303 
cinnamon+cardamom, but again in the free-linking study several other samples 304 
(cinnamon+pepper, cardamom) separate clearly on this dimension).   305 
 306 
For the chocolate, the first dimension distinctly separates premium, dark chocolates from milk 307 
chocolates, while the second axis separates mass-market dark chocolates (Hershey’s and 308 
Cadbury’s) from the other samples.  In the third dimension, the sole premium, milk chocolate 309 
(Endangered Species) is separated from the remaining samples, but only in the free-linking study 310 
is it clear that this dimension is capturing similarities between both chocolates from this producer 311 
(Figure 5).  Finally, the fourth dimension separates the dark chocolate from Endangered Species 312 
from the remaining chocolates, but, again, in the free-linking study it is clear that there is more 313 
separation on this axis, with a strong separation between the two dark chocolates from Green & 314 
Black on this axis as well as separation among the other samples. 315 
 316 

FIGURE 5 GOES HERE 317 
 318 
3.2. Stability (via 𝑅𝑅𝑅𝑅𝑅𝑅) 319 
In order to investigate stability of the solutions as a function of the number of panelists, 𝑅𝑅𝑅𝑅𝑅𝑅 was 320 
calculated as described in Blancher et al. (2012).  Figure 6 shows the 𝑅𝑅𝑅𝑅𝑅𝑅 results for free sorting 321 
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and free linking.  As is apparent, the desired level of stability (the 0.95 level) is achieved with 322 
essentially the same number of subjects for both sorting and linking—although an average of 323 
about 1 subject less is required for stability in free sorting than in free linking.  Given that this 324 
level of stability is achieved at between 8-10 subjects in these studies, this difference of a single 325 
subject is unlikely to be important in practical applications.  In contrast to Blancher et al. (2012), 326 
we used all 10 dimensions to calculate 𝑅𝑅𝑅𝑅𝑅𝑅, but results for only Dimensions 1 and 2 (as 327 
calculated in Blancher et al. 2012) were almost identical to the full factor bootstraps (results not 328 
shown). 329 
 330 
This is a quite low number of subjects when compared to those calculated by Blancher et al. 331 
(2012)—it corresponds most closely to the results in that study for a similar dataset of chocolate 332 
aromas (DS1, a free sort of 11 samples).  While Blancher et al. (2012) do not give details on 333 
sample-inclusion criteria, in the case of both Study 1 and Study 2 samples were chosen 334 
specifically for their potential to be grouped by subjects (i.e., blends of the same spices and 335 
chocolates from the same manufacturers, see Table 1), which may explain the high stability 336 
observed here.  It is also noticeable that the number of subjects required is slightly lower in 337 
Study 2 (chocolate, solid line) than in Study 1 (spice, dashed line).  This difference seems like it 338 
may be attributed to the difference in modality—taste and flavor for Study 2, and only aroma for 339 
Study 1; differences in the products themselves may also be in play.  This difference is also 340 
evident in the relative size and overlap of confidence ellipses for DISTATIS results (in which the 341 
𝑅𝑅𝑅𝑅 coefficient is a key statistic) seen in Figures 4 and 5.  However, there is no evident difference 342 
in the 𝑅𝑅𝑅𝑅𝑅𝑅 patterns between sample type, modality, and methodology (sorting vs. linking).  The 343 
apparent stability of each method is equivalent.   344 
 345 

FIGURE 6 GOES HERE 346 
 347 
3.3. Graph parameters 348 
Three key graph parameters were investigated for this study.  In a graph, the degree of a node 349 
represents the number of incident edges; for the sorting and linking studies, for each subject the 350 
degree of each sample indicates the number of other samples to which it was judged similar.  351 
Higher degree thus indicates a potentially lower discrimination ability among subjects, as fewer 352 
distinctions are made.  For both Study 1 and Study 2, the degree distribution for free linking is 353 
clearly skewed more right than the degree distribution for free sorting (see Figure 7). Wilcoxon 354 
rank-sum tests indicate that the free-sorting task produces significantly larger degrees per node 355 
than the free-linking task for both the spice (𝑊𝑊 = 143331,𝑝𝑝 < 0.05) and the chocolate (𝑊𝑊 =356 
167328,𝑝𝑝 < 0.05) studies.  This indicates that free linking better discriminates the samples than 357 
free linking.   358 
 359 

FIGURE 7 GOES HERE 360 
 361 
The transitivity on triads of a graph indicates the likelihood, given three nodes A, B, and C and 362 
edges {A, B} and {B, C}, that there will also be an edge {A, C}.  In terms of free sorting and 363 
free linking, transitivity gives another indication of discrimination ability—it is a direct 364 
measurement of the degree to which similarities among samples are forced by the method or are 365 
allowed to be indicated by the subjects, and ranges from 0 to 1.  In Figure 8, transitivity is plotted 366 
on the Y-axis against degree (see above) on the X-axis.  By the nature of the sorting task, 367 
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transitivity is always 0 or 1; it is only 0 in the degenerate case, when subjects made only pairs of 368 
samples, which happened several times in the spice study.  For free sorting there is a much 369 
broader range of transitivity values in the [0, 1] range, indicating a higher likelihood of actual 370 
discrimination by the subjects. 371 
 372 

FIGURE 8 GOES HERE 373 
 374 
Finally, the connectivity of a graph is a measure, for each subject, of the number of distinct, 375 
connected paths between all pairs of nodes.  Higher connectivity indicates a less disjoint (or 376 
disconnected) graph; in terms of free sorting and free linking, lower connectivity would mean 377 
more disjoint graphs, which are likely the result of a less realistic similarity model.  In Figure 9, 378 
connectivity is plotted on the Y-axis against degree on the X-axis.  For both studies, free linking 379 
tended to exhibit higher connectivity values than free sorting, as expected, but the differences 380 
were in general rather smaller than the differences in connectivity or degree.  Thus, while 381 
subjects did produce more connected graphs using free linking than free sorting, they did not 382 
always produce fully connected graphs. 383 
 384 

FIGURE 9 GOES HERE 385 
 386 
3.4. Subject preferences 387 
Finally, it is important to consider subjects’ experience of the two tasks.  In a simple question of 388 
overall preference (“Did you prefer the free-sorting or free-linking task?”), panelists preferred 389 
free-sorting to free-linking narrowly but insignificantly in Study 1 (𝜒𝜒12 = 1.10, 𝑛𝑛𝑛𝑛), and by a 390 
broad and significant margin in Study 2 (𝜒𝜒12 = 19.44,𝑝𝑝 < 0.05; see Table 2).  In neither task did 391 
it matter which task the subjects completed first (Study 1: 𝜒𝜒12 = 0.69,𝑛𝑛𝑛𝑛; Study 2: 𝜒𝜒12 =392 
1.49,𝑛𝑛𝑛𝑛).  This can potentially be explained by the difference in complexity of the relative tasks: 393 
in Study 1, the test was by aroma only, whereas in Study 2 the subjects had to taste the chocolate.  394 
Therefore, it is possible that Study 2 involved a more fatiguing sensory task and a more taxing 395 
memory task, and in these circumstances it would make sense that subjects would prefer the 396 
simpler free-sorting task, which involves fewer pairwise comparisons.  Alternatively, it is 397 
possible that the difference may be that the set of samples evaluated in Study 1 was “designed” 398 
by blending spices, providing an “easier” similarity structure. 399 
 400 
Subjects also answered questions about ease-of-use and rated liking for each task, both on 401 
unstructured line scales converted to 10-pt values.  Results were analyzed by mixed-effects 402 
ANOVA, with the dependent variable (liking or ease) modeled as dependent on the random 403 
effect of the particular subject, with the task (free sorting or free linking) as a within-subjects 404 
variable and the order of task completion as a between-subjects variable.  For all tests, there was 405 
no effect of order of task, and no interaction between order and the task itself, so these results 406 
will not be reported in detail.  For Study 1, subjects indicated that they did not find any 407 
difference in ease-of-use for the two tasks (effect of task on ease-of-use: 𝐹𝐹1,56 = 0.016,𝑛𝑛𝑛𝑛; free 408 
sorting 𝑀𝑀 = 7.62, 𝑆𝑆𝑆𝑆 = 1.78, free linking 𝑀𝑀 = 7.14, 𝑆𝑆𝑆𝑆 = 2.08), but they did report a 409 
significantly higher liking for the free-sorting task (effect of task on liking: 𝐹𝐹1,56 = 5.14,𝑝𝑝 <410 
0.05; free sorting 𝑀𝑀 = 7.57, 𝑆𝑆𝑆𝑆 = 1.70, free linking 𝑀𝑀 = 6.85, 𝑆𝑆𝑆𝑆 = 2.08).  For Study 2, 411 
subjects indicated significant differences in both ease-of-use (effect of task on ease-of-use: 412 
𝐹𝐹1,61 = 24.76,𝑝𝑝 < 0.05; free sorting 𝑀𝑀 = 8.36, 𝑆𝑆𝑆𝑆 = 1.48, free linking 𝑀𝑀 = 6.96, 𝑆𝑆𝑆𝑆 = 2.38) 413 
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and liking (effect of task on liking: 𝐹𝐹1,61 = 19.40,𝑝𝑝 < 0.05; free sorting 𝑀𝑀 = 7.54, 𝑆𝑆𝑆𝑆 = 1.61, 414 
free linking 𝑀𝑀 = 6.11, 𝑆𝑆𝑆𝑆 = 1.92).  These results can be explained in the same way as the 415 
preference results: possibly a significantly higher memory and sensory-fatigue loads for tasting 416 
would make free linking a more difficult and less pleasant task than free sorting, or possibly the 417 
set of samples evaluated in Study 1 was slightly “easier” than the chocolates in Study 2.  In both 418 
cases, it is also possible that subjects are simply more familiar with free sorting than with free 419 
linking, and familiarity has bred comfort with and preference for that method: while subjects 420 
were not surveyed about previous experience, our lab frequently conducts free-sorting studies 421 
and some subjects were definitely previous participants. 422 
 423 
4. Discussion 424 
Free sorting, as a rapid method for assessing similarities among a set of samples, has become an 425 
extremely popular method in both industry and academia (Dehlholm, 2015; Koenig et al., 2020, 426 
2021; Valentin et al., 2012).  However, the basic instruction of free sorting—that subjects form 427 
disjoint groups according to similarity—implies a model of similarity among the products that is 428 
likely to be unrealistic.  Specifically, sorting requires that similarities be fully transitive and 429 
essentially unidimensional.  In contrast, the method of pairwise free-linking, which we have 430 
formalized and demonstrated in this paper, provides results that are comparable to free sorting, 431 
while avoiding these restrictive assumptions. 432 
 433 
In particular, on the same product sets, free linking results in significantly lower vertex degree 434 
measurements for each product, indicating that subjects are making more discriminating 435 
similarity judgments (Figure 7).  In addition, the transitivity (or “clustering coefficient” 436 
Kolaczyk & Csárdi, 2014) of the similarity graphs from free linking were significantly more 437 
diverse than those from sorting, which are in general fully transitive (Figure 8); this explicitly 438 
indicates that subjects in free-linking studies are not forced to “close the triangle” when they 439 
want to indicate that A and B are similar, as are B and C.  At the same time, the connectivity of 440 
the free-linking graphs was also noticeably higher than that of the free-sorting graphs (Figure 9), 441 
indicating that individual models of similarity generated through free linking were more robust, 442 
with graph distance giving a non-binary similarity measure (Chartrand & Zhang, 2014), which 443 
should capture a more multidimensional model of similarity. 444 
 445 
This more “multidimensional” similarity is evident in DISTATIS biplots of results of free sorting 446 
and free linking on the same samples.  Although for both spices (Figure 4) and chocolate (Figure 447 
5) gross similarities, represented by Dimensions 1 and 2 of the biplots, are almost identical, there 448 
is much better discrimination of samples in Dimensions 3 and 4 for both sample sets.  This 449 
follows naturally from the two different models of similarity implied by free sorting and free 450 
linking.  Free sorting emphasizes rapidly finding gross similarities; free linking, while more 451 
intensive because of the need for multiple pairwise judgments (Figure 1), focuses on 452 
multidimensional similarity.  Nevertheless, both methods provide stable results, as indicated 453 
by 𝑅𝑅𝑅𝑅𝑅𝑅, at approximately similar numbers of subjects (Figure 6).  However, it is important to 454 
note that, on the whole, subjects found free sorting less taxing and more pleasant than free 455 
linking.  It will be important to take subject fatigue into account when designing future studies 456 
that employ free linking.  We might imagine that free linking would also be less fatiguing for 457 
trained subjects, who are used to making frequent, analytical, sensory judgments. 458 
 459 
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4.1. Limitations and future work 460 
A key limitation of this study was the artificial nature of the sample sets: for both the spices and 461 
the chocolates, the samples were chosen to span a product category.  In a real product-462 
development or other applied situation, it is unlikely that there would be such a structured set of 463 
products.  Arguably, free linking, which relies on pairwise comparisons, should perform better in 464 
these real situations, but this could not be determined from these sample sets.  It also remains to 465 
be seen whether the lower preference and liking ratings for free linking by subjects will result in 466 
lower compliance or lower quality data when the method is used in a non-comparative setting. 467 
 468 
The free-linking task also provides some new possibilities for the design of sensory studies.  For 469 
example, to this point it has not been feasible to conduct free-sorting tests (or indeed projective-470 
mapping tests) in an incomplete-block design, because the sorting space depends simultaneously 471 
on all samples.  This has restricted the number of samples that can practically be analyzed in a 472 
free-sorting study to around 25 actual samples (the number is much higher for visual or text 473 
samples).  This restriction should not apply to the free-linking task, which is based on a 474 
similarity graph of pairwise comparisons, but provides results that are similar or arguably 475 
superior to free sorting.  Therefore, a logical future study is the investigation by free-linking of 476 
similarities in a set of samples large enough to present with an incomplete block design, but 477 
small enough to also investigate in full with free sorting in order to determine the comparability 478 
of this approach.  Incomplete blocks for similarity would be a significant boon to food-sensory 479 
researchers in both industry and academia.  In addition, given that free sorting appears to become 480 
exponentially more fatiguing as the number and sensory complexity of samples increases (see for 481 
example Kessinger et al., 2020), it may be hoped that free linking, which requires a larger 482 
number of simpler judgments, may perform better with large sample sets, especially when 483 
implemented in incomplete blocks as described above. 484 
 485 
4.2. Conclusions 486 
In this paper, we present a new, rapid method for assessing similarities among a set of samples: 487 
the “free-linking task”.  In the free-linking task, subjects are given a set of samples and asked to 488 
indicate pairwise similarity according to their own criteria; in effect, as we have demonstrated, 489 
subjects are drawing their own individual similarity graph for the samples.  The data from free 490 
linking can be treated using existing tools for analyzing similarity data, such as DISTATIS, 491 
MFA, or even MDS.   492 
 493 
The free-linking task explicitly solves two issues with the currently popular free-sorting task: in 494 
free sorting, subjects can only indicate one degree of similarity (is/is not similar) and are forced 495 
to make fully transitive similarity groups.  While previously proposed modifications of sorting 496 
like the hierarchical and multiple free-sorting tasks can solve these respective tasks with 497 
replicated or multiple passes of sorting for each sorting, free linking solves both problems at 498 
once with only a single task.  As we have demonstrated, therefore, the results of free linking 499 
provide a more realistic representation of similarity and allow finer and more powerful 500 
interpretations than free sorting.  However, while the results of free linking are more realistic and 501 
robust, the cost is that free linking, because it involves more pairwise comparisons, is also more 502 
demanding for the participants.  The multimensionality of free-linking data is also greater, which 503 
can be considered either a cost or a benefit, depending on the sensory analyst’s goals.  Therefore, 504 
we believe that the free-linking task will be a significant addition to the sensory analyst’s arsenal 505 
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of tools for rapidly assessing similarities, and we expect to see improvements and new uses cases 506 
for the tool in the near future. 507 
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Tables 584 
 585 
Table 1. Sample information for Study 1 and Study 2. 
Study 1 – Spices* 
Sample Name Recipe 

Cinnamon 1 g ground cinnamon 
Cardamom 1 g ground cardamom 
Pepper 1 g ground black pepper 
Turmeric 1 g ground turmeric 
Cinnamon + cardamom 0.5 g ground cinnamon + 0.5 g ground cardamom 
Cinnamon + pepper 0.5 g ground cinnamon + 0.5 g ground black pepper 
Cinnamon + turmeric 0.5 g ground cinnamon + 0.5 g ground turmeric 
Cardamom + pepper 0.5 g ground cardamom + 0.5 g ground black pepper 
Cardamom + turmeric 0.5 ground cardamom + 0.5 g ground turmeric 
Pepper + turmeric 0.5 ground black pepper + 0.5 g ground turmeric 

Study 2 - Chocolate 
Manufacturer Chocolate type Cocoa content 

Cadbury Dark 35%? 
Hershey's  Dark 45%? 
Green & Black's Dark 70% 
Endangered Species Dark 72% 
Green & Black's Dark 85% 
Pascha Dark 85% 
Cadbury Milk 26%? 
Hershey's  Milk 30%? 
Green & Black's Milk 34% 
Endangered Species Milk 48% 

*All spices are McCormick Gourmet Organic line ground spices (no whole spices were used for the purpose of blending the 
recipes). 
?information gathered indirectly from manufacturer’s website rather than packaging. 

 586 
Table 2. Counts of preference for free-sorting or free-linking task for each study, counted by 
which test was completed first. 
Task Completed First Prefer Free-Sorting Prefer Free-Linking 
Study 1: Spices (by smell) 

Free-Sorting 15 15 
Free-Linking 10 18 

Study 2: Chocolate (by taste) 
Free-Sorting 24 10 
Free-Linking 25 4 

 587 
  588 
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Figures 589 
 590 
Figure 1. Interface for individual subjects’ free-linking task, as rendered in SensoGraph (Orden 591 
et al., 2019).  Note that sample order is randomized between subjects. 592 
 593 
Figure 2. Schematic representation of free sorting (top) and free linking (bottom).  From the 594 
same samples (presented in random order to each subject) in (1), the methods diverge.  For free 595 
sorting, subjects group samples (2) and their groupings are transformed directly to binary 596 
dissimilarities (3).  For free linking, subjects indicate pairwise similarity (2), which is 597 
transformed into graph distances (3), and then to [0,1]-range dissimilarity (4, with details given 598 
in Figure 3).  At this point, the same analyses can be conducted on the each of the dissimilarity 599 
matrices. 600 
 601 
Figure 3. Schematic for deriving dissimilarity from graph distance, based on Koenig et al. 602 
(2021). 603 
 604 
Figure 4. DISTATIS biplots for free sorting (top, in purple) and free linking (bottom, in orange) 605 
of spice-study results.  The left-hand column gives Dimensions 1 and 2, while the right-hand 606 
column gives Dimensions 3 and 4 of the respective spaces. 607 
 608 
Figure 5. DISTATIS biplots for free sorting (top, in purple) and free linking (bottom, in orange) 609 
of chocolate-study results.  The left-hand column gives Dimensions 1 and 2, while the right-hand 610 
column gives Dimensions 3 and 4 of the respective spaces. 611 
 612 
Figure 6. Stability of consensus solutions as assessed by 𝑅𝑅𝑅𝑅𝑅𝑅 for free linking (purple) and free 613 
sorting (orange) in spice (dashed) and chocolate (solid) studies. 614 
 615 
Figure 7. Degree distributions for spice (left) and chocolate (right) studies for free linking 616 
(purple) and free sorting (orange).  In these studies, higher degree indicates less power to 617 
discriminate among samples. 618 
 619 
Figure 8. Scatter plots of individual subjects’ degree (with lower degree indicating higher 620 
discrimination power) against transitivity (clustering coefficient, with higher values indicating 621 
forced grouping/similarity) for free linking (purple) and free sorting (orange).  Note that for free 622 
sorting, transitivity is always equal to 1 except in the rare degenerate case in which subjects only 623 
make groups of 2 or fewer samples (bottom left). 624 
 625 
Figure 9. Scatter plots of individual subjects’ degree (with lower degree indicating higher 626 
discrimination power) against connectivity (with higher values indicating ability to detect 627 
multiple levels of similarity).  Note that for free sorting, only high values of degree guarantee 628 
higher connectivity, whereas in free linking higher connectivity is achieved at lower degree (with 629 
higher discrimination power). 630 
 631 
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