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1 Dpto. Informática, Universidad de Valladolid,
Campus Miguel Delibes, 47011 Valladolid, Spain

{alvaro,diego,bpalop}@infor.uva.es
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Abstract. Scheduling is one of the factors that most directly affect per-
formance in Thread-Level Speculation (TLS). Since loops may present
dependences that cannot be predicted before runtime, finding a good
chunk size is not a simple task. The most used mechanism, Fixed-Size
Chunking (FSC), requires many “dry-runs” to set the optimal chunk size.
If the loop does not present dependence violations at runtime, schedul-
ing only needs to deal with load balancing issues. For loops where the
general pattern of dependences is known, as is the case with Randomized
Incremental Algorithms, specialized mechanisms have been designed to
maximize performance. To make TLS available to a wider community,
a general scheduling algorithm that does not require a-priori knowledge
of the expected pattern of dependences nor previous dry-runs to adjust
any parameter is needed. In this paper, we present an algorithm that
estimates at runtime the best size of the next chunk to be scheduled.
This algorithm takes advantage of our previous knowledge in the design
and test of other scheduling mechanisms, and it has a solid mathemat-
ical basis. The result is a method that, using information of the exe-
cution of the previous chunks, decides the size of the next chunk to be
scheduled. Our experimental results show that the use of the proposed
scheduling function compares or even increases the performance that can
be obtained by FSC, greatly reducing the need of a costly and careful
search for the best fixed chunk size.

Keywords: Thread-level speculation · Speculative parallelization ·
Speculative multithreading · Scheduling

1 Introduction

Thread-Level Speculation (TLS) [4,18,20] is the most promising technique for
automatic extraction of parallelism of irregular loops. With TLS, loops that
can not be analyzed at compile time are optimistically executed in parallel.
A hardware or software mechanism ensures that all threads access to shared
data according to sequential semantics. A dependence violation appears when
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one thread incorrectly consumes a datum that has not been generated by a pre-
decessor yet. In the presence of such a violation, earlier software-only speculative
solutions (see, e.g. [10,20]) interrupt the speculative execution and re-execute the
loop serially. Subsequent approaches [5,7,21] squash only the offending thread
and its successors, re-starting them with the correct data values. More sophisti-
cate solutions [9,15,22] squash only the offending thread and subsequent threads
that have actually consumed any value from it.

It is easy to see that frequent squashes adversely affect the performance of
a TLS framework. One way to reduce the cost of a squash is to assign smaller
subsets (called chunks) of iterations to each thread, reducing both the amount of
work being discarded in the case of a squash, and the probability of occurrence of
a dependence violation. However, smaller chunks also imply more frequent com-
mit operations and a higher scheduling overhead. Therefore, a correct choice of
the chunk sizes is critical for speculation performance. Most scheduling methods
proposed so far in the literature deal with independent blocks of iterations, and
were not designed to take into account the cost of re-executing threads in the
context of a speculative execution.

A widely used mechanism to solve this problem is to choose a fixed, optimum
size by trial and error. This method, called Fixed-Size Chunking [12] requires
many dry-runs to find an acceptable value. Moreover, a particular size found for
one application is of little use for another one, or even for a different input set
of the same application.

In this work we address the general problem of scheduling chunks of iterations
for their speculative execution, regardless of the number of dependence violations
that may actually appear. We have found that the pattern of dependence viola-
tions heavily depends on the application. Therefore, a scheduling strategy that
is able to dynamically adapt the size of chunks at runtime is very desirable.

In this paper, we introduce a scheduling method, called Moody Scheduling,
that tries to predict, at runtime, the best chunk size for the next chunk to be
scheduled. To do so, we rely on the number of re-executions of the previous
chunks, not only by using the mean of the last re-executions, but also their ten-
dency. With this method, we are able to (a) provide a general solution that does
not need an in-depth study of the dependence violation pattern, and (b) greatly
reduce the need of repetitive executions to tune the scheduling mechanism used.

The rest of the paper is organized as follows. Section 2 reviews some of
the existent scheduling alternatives currently used with TLS. Section 3 intro-
duces the main aspects of our proposal. Section 4 describes the function from a
mathematical point of view. Section 5 explores two different uses for our Moody
Scheduling. Section 6 gives some experimental results, comparing the new algo-
rithm with FSC, while Sect. 7 concludes this paper.

2 Related Work

Since the size of the chunk assigned to each processor directly affects perfor-
mance in TLS, numerous algorithms have been proposed to give a solution to
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this problem. The simplest one, called Fixed-Size Chunking (FSC), was ini-
tially proposed by Kruskal and Weiss [12]. With this mechanism, each thread
is assigned a constant number of iterations. Finding the right constant needs
several dry-runs on each particular input set for each parallelized loop. When
no dependence violations arise at runtime, this technique is perfectly adequate.
The only remaining concern is to achieve a good load balance when the last
iterations are being scheduled. Some examples of mechanisms that implement
load-balancing techniques can be found in [11] or [23].

There are solutions based on compile-time dependence analysis [19,25].
In these approaches, scheduling decisions are taken by reviewing the possible
dependence pattern that can arise, so an in-depth analysis of the loop is needed.

Other approaches rely on the expected dependence pattern of the loop to
be parallelized. In particular, for Randomized Incremental Algorithms, where
dependences tend to accumulate in the first iterations of the loop, two methods
have been shown to improve performance. The first one, called Meseta [16],
divides the execution in three stages. In the first one, chunks of increasing sizes
are scheduled, aiming to compensate for possible dependence violations, until a
lower bound of the probability of finding a dependence is reached. From then
on, a second stage applies FSC to execute most of the remaining iterations.
A third stage gradually decreases the chunk size, aiming to achieve a better load
balancing.

The second mechanism is called Just-In-Time (JIT) Scheduling [17]. This
method also focuses on randomized incremental algorithms, where dependences
are more likely to appear during the execution of the first chunks. JIT Scheduling
defines different logarithmic-based functions that issue chunks of increasing size,
and relies on runtime information to modulate these functions according to the
number of dependence violations that effectively appear.

Kulkarni et al. [13] also discussed the importance of scheduling strategies in
TLS. These authors defined a schedule through three steps, i.e., three design
choices that specify the behavior of a schedule, namely clustering, labeling and
ordering. They tested several strategies for each defined module, using their
Galois framework. Their results show that each application analyzed was closely
linked to a different scheduling strategy.

In summary, we can conclude that proposed solutions so far either depend
on the expected dependency pattern of the loop to be speculatively executed, or
require a big number of training experiments to be tuned, as in the case of FSC.
In this paper we present a new mechanism that issues chunks of different sizes,
by taking into account the actual occurrence of dependence violations, without
using any prior knowledge about their distribution.

3 Moody Scheduling: Design Guidelines

Our main purpose is to design a scheduling function that is able to predict
the best size for the following chunk to be issued at runtime, without the need
of a knowledge of the underlying problem. In order to decide the size of the
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Fig. 1. (a) A possible execution profile for a given loop, and (b) an example of the use
of linear regression to measure the tendency of the last h chunks. Recall that the y-axis
does not represent the chunk size, but the number of re-executions for each chunk.

next chunk to be scheduled, we will use the number of times that the last h
chunks have been squashed and re-executed due to dependence violations. As
an example, Fig. 1(a) shows, for each scheduled chunk (x-axis), the number of
times it has been executed so far (y-axis).

Given the number of executions of the last h chunks (regardless whether they
were already committed or not), we will consider two parameters. The first one is
the average number of executions of the last h chunks, which we call meanH and
whose value is, at least, 1. The second one is the tendency of these re-executions.
This value, which we call d, lies in the interval (−1, 1) and determines if the
number of executions is decreasing (d < 0), increasing (d > 0), or remaining
unchanged (d = 0). As we will see, d depends on the angle δ between the linear
regression line for the last h chunks and the horizontal axis (see Fig. 1(b)).

The size of the following chunk to be scheduled will depend on these two para-
meters. We will first present an informal description of the idea. The following
section shows the mathematical background and the implementation details.

1. If the tendency of re-executions is decreasing (d close to −1):
(a) If meanH is very low (close to 1), we will (optimistically) set the chunk size

to the maximum size suitable for this problem. We will call this maximum
value maxChunkSize.

(b) If meanH is between the minimum value (1) and an acceptable value (that
we call accMeanH), we will (optimistically) increase the chunk size.

(c) If meanH is between accMeanH and an upper limit (that we call
maxMeanH), we will keep the same chunk size, with the aim that its
execution will help to further reduce meanH.

(d) If meanH is higher than maxMeanH, we set the size of the following chunk
to 1.

2. If the tendency of re-executions is stable (d close to 0):
(a) If meanH is very low (close to 1), then we will (optimistically) issue a

larger chunk size.
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(b) If meanH is acceptable (close to accMeanH), then we will keep the same
chunk size.

(c) If meanH is between accMeanH and maxMeanH, then we will (pessimisti-
cally) decrease the chunk size.

(d) If meanH is higher than maxMeanH, we set the size of the following chunk
to 1.

3. If the tendency of re-executions is increasing (d close to 1):
(a) If meanH is very low (close to 1), then we propose to keep the same chunk

size, waiting for the next data to confirm if meanH really gets larger.
(b) If meanH is acceptable (close to accMeanH), then we decrease the chunk

size, intending to reduce the number of executions.
(c) If meanH is close to (or higher than) maxMeanH, then we propose a chunk

of size 1 intending to minimize the number of re-executions.

The last question is what size we should use to issue the first chunk, where
there is no past history to rely on. As we will see in Sect. 6, setting this inital
value to 1 leads to a good performance in all the applications considered.

Table 1 summarizes the behavior of our scheduling mechanism. Using this
approach, given the current lastChunkSize and a pair of values (d,meanH)
our function will use the guidelines described above to propose a value for
nextChunkSize. The following section discusses the implementation details.

Table 1. Changes on the following chunk sized according to d and meanH parameters

meanH ≈ 1 meanH ≈ accMeanH meanH ≈ maxMeanH meanH > maxMeanH

d → −1 ↑ ↗ = 1

d ≈ 0 ↗ = ↘ 1

d → 1 = ↘ 1 1

4 Moody Scheduling Function Definition

After the informal description presented above, the following step is to define a
function that determines the value for nextChunkSize using the current value of
lastChunkSize, together with d and meanH. In order to obtain the value of δ, we
compute the regression line defined by the last h points in our execution window
(see Fig. 1(b)).

The main problem with the intuitive behavior described above is that its
straightforward implementation (with nested if. . . then constructs) leads to a
discontinuous function. This is not a desirable situation, since the behavior of
the scheduling function would drastically change for very similar situations.

Instead, we define a bidimensional function that, for a given value of meanH
and d, returns the size of the next chunk to be scheduled. Figure 2(a) shows a 3D
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Fig. 2. (a) 3D representation of the Moody Scheduling function, that returns a value
for nextChunkSize (nCS) provided the current lastChunkSize and depending on d and
meanH; (b) 2D representation that connects our function with the intuitive behavior
described in Sect. 3; (c) Intersection of the graphic of nextChunkSize (d,meanH) with
d = 0.

representation of the Moody Scheduling function proposed. Figure 2(b) shows its
projection onto a horizontal plane, using the same grey scale as in Table 1.

To properly define this scheduling function, several parameters should be set.
The value of d is calculated by measuring the angle δ of the tendency with respect
to the horizontal axis. This angle lies in (−π/2, π/2). Our growth tendency
d ∈ (−1, 1) will be given by d = δ

π/2 .
The following parameter to be defined is accMeanH, that is, the highest

value of meanH considered to be acceptable. We initially set accMeanH = 2,
considering that, on average, we will accept that chunks have to be reexecuted
at most once.

There are two remaining parameters: maxChunkSize and maxMeanH, whose
values depend on the slopes of the graphic of the bidimensional scheduling
function as follows. If we fix d = 0 in the scheduling function, we obtain the
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plot depicted in Fig. 2(c). In this case, we can define two angles, α and β (see
figure). The angle α represents how optimistically the chunk size is going to
be increased. The higher the value for α, the most optimistic the scheduling
function will be. Analogously, β represents how pessimistically the chunk size
is going to be decreased. If we fix the value for these two angles, the value of
maxChunkSize is determined by the intersection between the segment from P
with angle α, and the vertical line defined by meanH = 1. Analogously, the value
for maxMeanH is determined by the intersection between the segment from P
with angle β, and the horizontal line defined by nextChunkSize = 1. In the
case that lastChunkSize = 1, β will be 0. On the other hand, α �= 0 as long as
accMeanH will never be set to 1.

The nine particular points defined by meanH ∈ {1, accMeanH,maxMeanH}
and d ∈ {−1, 0, 1} are defined by the values described above. Given that the
call to nextChunkSize(d,meanH) will return maxChunkSize for the three points
(−1, 1), (−1, accMeanH), and (0, 1), the function will also return maxChunkSize
to all points inside this triangle. Analogously, for all points inside the triangle
with vertices (1, accMeanH), (1,maxMeanH), and (0,maxMeanH), the function
will return 1. Notice that points on the diagonals (1, 1) to (0, accMeanH), and
from there to (−1,maxMeanH) will return lastChunkSize. These three facts
provide a natural triangulation for the space in Fig. 2(b).

5 Dynamic and Adaptive Implementations

If no dependences arose during the parallel execution, the size of the following
chunk would be calculated only once, that is, just before issuing its execution.
Otherwise, if the execution of the chunk fails, it gives the runtime system an
opportunity to adjust its calculation by calling the scheduling function with
updated runtime information. As it happens in [17], this leads to two different
ways to use the scheduling function:

– To calculate the size of the following chunk only the first time this particular
chunk will be issued. Subsequent re-executions will keep the same size. See
Fig. 3(a).

– To re-calculate the size of the following chunk each time the chunk is sched-
uled. This solution is called adaptive scheduling in [17]. See Fig. 3(b).

The advantage of adaptive over dynamic scheduling is that the first calcu-
lation of the chunk size may rely on incomplete information, since some or all
of the previous chunks are still being executed, and therefore they may suffer
additional squashes. Adaptive scheduling will always reconsider the situation
using updated data. Naturally, this comes at the cost of additional calls to the
scheduling function.
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Fig. 3. (a) Dynamic Moody Scheduling. The size for the following chunk to be executed
(#10) is calculated once (89 iterations). Its size will be preserved regardless of the
number of re-executions of this chunk. (b) Adaptive Moody Scheduling. (i) Size of
chunk #10 is calculated with the Moody Scheduling function (89 iterations). (ii) Chunk
#9 issues a squash operation. (iii) Squashed threads recalculate in program order the
new sizes of the chunks to be executed, using the new values of the execution counters.

6 Experimental Evaluation

We have used ATLaS, a software-based TLS framework [1,8], to execute in
parallel four different applications that present non-analyzable loops with and
without dependences among iterations.

The first benchmark used is TREE from [2]. This application spends a large
fraction of its sequential execution time on a loop that can not be automatically
parallelized by state-of-the-art compilers because it has dependence structures
that are either too complicated to be analyzed at compile time or dependent on
the input data.

We consider three additional applications that present loops with depen-
dences. The first one is the 2-Dimensional Convex Hull (2D-Hull), an incremen-
tal randomized algorithm due to Clarkson et al. [6]. The algorithm computes
the convex hull (smallest enclosing convex polygon) of a set of two-dimensional
points in the plane. We have tested this application using three different input
sets: Disc and Square, that are composed of points uniformly distributed inside a
disc and a square, and Kuzmin, that is composed of points that follow a Kuzmin
distribution [3].

The second application, called the 2-Dimensional Minimum Enclosing Circle
(2D-MEC) [24], finds the smallest enclosing circle containing a given set of points
in the plane. The construction is also incremental. In this case, a dependence
violation forces not only an update of the current solution, but the recalculation
of the entire enclosing ball. This fact produces devastating effects when the
benchmark is speculatively parallelized.
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Table 2. Characteristics of the algorithms and input sizes used

Algorithm Input set description Loop Loop time Iterations per % of FSC chunk

parallelized as % of invocation dependence size used

total time violations (iterations)

TREE Off-axis parab. collision accel 10 94 4 096 0 100

2D-Hull Kuzmin, 10M points Main loop 99 9 999 997 0.0008 11 000

2D-Hull Square, 10M points Main loop 99 9 999 997 0.0032 3 000

2D-Hull Disc, 10M points Main loop 99 9 999 997 0.021 1 250

2D-MEC Disc, 10M points Inner loop 99 Changes

dynamically

0.009 1 800

Delaunay 100K points Main loop 99 95 000 0.5 2

The last benchmark is the Delaunay triangulation [14] of a two-dimensional
set of points. We have used an input set of 100 K points. Table 2 summarizes the
characteristics of each application considered.

Experiments were carried out on a 64-processor server, equipped with four
16-core AMD Opteron 6376 processors at 2.3 GHz and 256 GB of RAM, which
runs Ubuntu 12.04.3 LTS. All threads had exclusive access to the processors
during the execution of the experiments, and we used wall-clock times in our
measurements. Applications were compiled with gcc. Times shown below repre-
sent the time spent in the execution of the main loop of the application. The
time needed to read the input set and the time needed to output the results have
not been taken into account.

Figure 4 shows the relative performance of the mentioned applications when
executed with the ATLaS speculative parallelization framework [1] and three
different scheduling mechanisms: Adaptive Moody Scheduling, Dynamic Moody
Scheduling and Fixed-Size Chunking (FSC).

The plots show the performance obtained when an optimum chunk size is
used for FSC (a choice that required more than 20 experiments per application)
and for Moody Scheduling, whose choice of parameters required less than five
experiments in all cases. In the case of Moody Scheduling, we have used a value
of 2 for accMeanH, β = π

4 , and a value for h (the size of the window to be consid-
ered) equal to twice the number of processors for all applications. Regarding α,
we have used values ∈ ( π

20 , π
6 ), depending on whether the application is known

to produce dependence violations at runtime.
Furthermore, Moody Scheduling turns out to be competitive even without

any tuning: If we set to 1 the initial chunk size, its performance reaches 88.3 %
of the best FSC on geometric average. Meanwhile, the performance of FSC with
chunk size 1 drops almost to zero (except for Delaunay, when the best chunk
size for FSC is 2).

Regarding 2D-Hull (Fig. 4(a), (b), and (c)), the results for the Disc and
Square input sets show that our scheduling method leads to a better performance
than FSC. For the Disc input set, the highest speedup (2.17×) is achieved with
32 processors and the Dynamic version. For the Square input set, the biggest
speedup (6.81×) is achieved with the Dynamic version and 40 processors. Finally,
the performance figures when processing the Kuzmin input set are similar for
all the scheduling alternatives. The best performance (11.11×) is achieved with
56 processors and the Adaptive version. The two remaining applications lead
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Fig. 4. Performance comparison for 2D-Hull with Disc, Square, and Kuzmin input sets,
and 2D-MEC, Delaunay, and TREE benchmarks. Note the extremely poor performance
of FSC when the chunk size is set to 1.

to similar performance results with all the scheduling mechanisms considered.
The 2D Smallest Enclosing Circle (Fig. 4(d)) achieved a speedup of 2.18× with
24 processors and the Dynamic version. The Delaunay triangulation (Fig. 4(e))
achieved a speedup of 2.58× using the Adaptive version. Finally, Fig. 4(f) shows
the speedup of TREE. This benchmark gained with the use of our scheduling
method: With 40 processors, FSC approach achieved its speedup peak, while
the Adaptive version continued improving its performance even with the maxi-
mum of available processors. It is interesting to note that, for TREE, both the
Dynamic and Adaptive mechanisms are equivalent: As long as no squashes are
issued, the size for each new chunk is calculated only once. The best perfor-
mance in this benchmark (7.96×) is obtained with the Adaptive version and 64
processors.

Regarding the relative performance of FSC and Moody Scheduling, both
strategies lead to similar performance figures for all applications, with the excep-
tion of the TREE benchmark, where Moody Scheduling is clearly better. The
main difference between them is that the choice of the optimum block size in FSC
required a prior, extensive testing (more than 20 runs per benchmark), while the
Moody Scheduling self-tuning mechanism leads to competitive results right from
the beginning. Moreover, the results obtained for the TREE application show
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that, contrary to intuition, our self-tuning mechanism leads to better results
than FSC even without dependence violations, despite the higher computing
cost added by the runtime calls to the Moody Scheduling function. Regard-
ing which approach is better, Dynamic or Adaptive, it seems to depend on the
application. Therefore, we will keep both of them in the ATLaS framework.

7 Conclusions

This work addresses an important problem for speculative parallelism: How to
compute the size of the following chunk of iterations to be scheduled. We have
found that most of the existent solutions are highly dependent on the particular
application to parallelize, and they require many executions of the problem to
obtain the scheduling parameters. Our new method, Moody Scheduling, auto-
matically calculates an adequate size for the next chunk of iterations to be
scheduled, and can be tuned further by making slight changes to its parameters,
namely α, β, h, and accMeanH. Our scheduling method can be used as a gen-
eral approach that avoids most of the ‘dry-runs’ required to arrive to scheduling
parameters in other methods. Results show that execution times are similar (or
better) to those obtained with a carefully-tuned FSC execution. Moody Schedul-
ing just needs from the user to decide how optimistic, and pessimistic, the TLS
system will be when it schedules the following chunk of iterations.
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