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Abstract. This paper focuses on enabling the use of negotiation for
complex system optimisation, whose main challenge nowadays is scal-
ability. Although multi-agent automated negotiation has been studied
for decades, it is still a challenge to handle in a scalable and efficient
manner negotiation problems involving many issues with complex inter-
dependencies. This is a clear obstacle for the use of automated negoti-
ation in complex networks. This paper proposes a novel perspective on
the negotiation process as a competitive belief propagation process, where
the whole negotiation is modelled as a factor graph and distributed belief
propagation techniques (BP) are used to yield a solution. We show that
the model adequately suits both simple and complex negotiation set-
tings in the literature, and we validate its efficiency and scalability in a
challenging, network structured, channel negotiation setting.
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1 Introduction

A wide range of real-world systems can be modelled as dynamic sets of inter-
connected nodes [14,20]. The adequate management of complex networked sys-
tems is becoming critical for industrialized countries, since they keep growing in
size and complexity. An important sub-class involves autonomous, self-interested
entities (e.g. drivers in a transportation network). The self-interested nature of
the entities in the network causes the network to deviate from socially-optimal
behaviour. This leads to problems related to unavailability and inefficient use of
resources.

Different fields of research are working on these challenges, but, so far,
with only mixed success. Optimization techniques are especially suited to
(© Springer International Publishing AG 2017
G. Sukthankar and J. A. Rodriguez-Aguilar (Eds.): AAMAS 2017 Visionary Papers,

LNAT 10643, pp. 1-16, 2017.
https://doi.org/10.1007/978-3-319-71679-4_1



2 I. Marsa-Maestre et al.

address large-scale systems with an underlying network structure, usually with
a “divide and conquer” approach [22,24]. However, their performance severely
decreases as the complexity of the system increases [21], and with the pres-
ence of autonomous entities which deviate from the globally optimal solution,
thus harming the social goal. Negotiation techniques are known to be useful to
handle self-interested behaviour [1], but scale poorly with problem size and the
intricacies of interdependencies [15].

Belief propagation (BP) is a message-passing technique which has been suc-
cessfully used to solve optimization problems by modelling problem constraints
using a graph structure [9]. In our previous work, we used it to improve the
scalability of an agent self-preference exploration during an auction-based nego-
tiation process over preference spaces built of hypercube-shaped constraints [18].
In a more recent work [11], the concept was extended to utility hypergraphs,
enabling negotiations with more complex shaped constraints. These works con-
tributed to greatly enhance scalability in complex negotiations by modelling
utilities as graphs, but did not explore problems which were graph-structured
by themselves. In addition, these works used belief propagation to explore the
preferences of each agent separately, thus keeping the BP process as a local opti-
mization process, using it to assist in the local search for solutions during the
negotiation process. This is coherent with the usual use of BP in cooperative
optimization settings.

Our goal is to provide a novel perspective of the multi-agent negotiation
process as a competitive belief propagation, which can help to efficiently handle
conflicts in network-structured settings. In this paper, we contribute to this goal
in the following way:

— We define the negotiation problem as a factor graph Fp and the negotiation
process as a competitive belief propagation over the factor graph, and we show
how the model suits well-known negotiation settings in the literature (Sect. 2).

— We apply this model to a challenging, network structured complex negotiation
setting: Wi-Fi channel negotiation (Sects. 3.1 and 3.2).

— We propose a distributed, scalable approach to use competitive belief propa-
gation to solve the problem (Sect. 3.3).

To test our hypothesis and evaluate the validity of our contribution, we have
conducted a set of experiments in a realistic scenario setting (Sect. 4). Our exper-
iments show that the belief propagation approach outperforms a classical non-
linear negotiation approach in terms of solution efficiency and performance. The
last section summarizes our contributions and sheds light on future challenges
and lines of research.

2 Negotiation as Competitive Belief Propagation

As we said above, our goal is to provide an alternative perspective on automated
negotiation as a competitive belief propagation process, so that this process
can be mapped naturally to network structured problems. To understand the
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rationale of this novel perspective, let’s see a simple example of the correspon-
dence between the two problems. Consider the classic negotiation game between
a buyer agent B and a seller agent .S over the price p of an item, and let us assume
that they are going to use an alternating offer protocol for the negotiation [7].
Let b% and b% the initial agent offers (or bids). For a typical bargaining scenario,
we will have b% < b%, that is, the buyer wants to pay less than the seller wants
to get. During the negotiation, we will expect to see a progressive relaxation of
the agents’ initial positions (i.e. by > bly" and b% < b") until we reach the
point of agreement (i.e. bly = b%) or the deadline expires. The relaxation speed of
the agents’ positions will depend on the different agent bidding strategies (e.g.
boulware, conceder, tit-for-tat [2]). This process can easily be seen as a belief
competition. Both agents start out with different beliefs about how much they
want to give or receive for the item (b% and b2, respectively), and these beliefs
get updated through the subsequents iterations of the protocol until an agree-
ment is reached (i.e. the beliefs of both agents match) or the deadline expires.
This belief competition perspective can be formalized into a factor graph and a
belief propagation process [9], as we will see in the following subsection.

2.1 Negotiation as a Factorized Optimization Problem

Belief propagation (BP) techniques have been shown as successful heuristics for
solving factorized optimization problems, that is, problems P of the form

minimize Z D;(x;) + Z Ve (z.) (1)

i€V ceC

where V is a finite set of variables and C'is a finite collection of subsets of V'
representing constraints. @; and ¥; are real-valued functions called, respectively,
variable functions and factor functions, representing the impact on the objec-
tive function of the value of each independent variable, and of combinations of
variable values (i.e. interdependencies between variables).

We can easily map to this kind of problem most of the utility or social welfare
functions used in automated negotiation, by choosing adequate expressions for
the @, and ¥; functions. For instance, in the trivial buyer-seller negotiation
example above we could choose

00 otherwise 00 otherwise

@B:{IRB if 2 < Rp @S:{Rsx if 2 > Rg
0 ifszms

oo otherwise

U(xp,xs) = {

where Rp and Rg are the reservation values of buyer and seller, respectively.
In this trivial case, each @; functions account for the preferences of agent ¢, and
the ¥ function represents that a disagreement is the worst possible outcome.
Other ¥ functions could be chosen depending on the desired outcome of the
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negotiation. For instance, we could choose a ¥ function representing a Clarke
tax (V(rp,rs) = “557), or a fairness metric such as the one defined in [8].

A similar translation can be done in a linear-additive multi-issue negotiation
setting, such as the one described in [6,17]. Here there would be a @, (x4 ;)
function for each agent a and issue i, corresponding to the valuation function of
each agent for each issue. ¥; functions would be defined for each issue depend-
ing on the desired outcome of the negotiation. For instance, to introduce the
aforementioned fairness measure we could define:

(Pp(ep)tes@s))’ H(Ealen)=ts(s)” i 5y — g

W(Z'B,Z.,IKS,Z') = {

00 otherwise

Apart from the @ and ¥ functions, we can also derive the corresponding
factor graph Fp of the factorized optimization problem P. This is a bipartite
graph with a node per @ and ¥ function, and links between nodes which share
variables.

2.2 The Negotiation Process as Belief Propagation

Once the negotiation problem has been expressed as a factorized optimization
problem Fp, we can solve it using belief propagation techniques. In particu-
lar, we use the min-sum version of BP described in [9], which we reproduce in
Algorithm 1 for convenience.

Algorithm 1. min-sum BP

Input : F': bipartite factor graph with edges (i, f) between variable nodes and
factor nodes representing constraints N: number of iterations
C': {ci}: available color set

Output: S: estimated optimal assignment

Initialize t = 0

foreach edge (i, f) in F do

| initialize m$_;(2)Vz € C
end
fort=1,2,...,N do
foreach edge (i, f) in F' do
update mﬁ—»f(z) =Pi(z) + Zkefi\f m 5 (2)

update mi‘—»z(z) = min Vs (y) + Z]'ef\i m;:}f(yj)
yeClfly;==
end
t=t+1

end

Set the belief function as

bY = ®;(z) + > kef m3_,(z) for each variable node %
Estimate the optimal assignment S as

3V for cach variable node i
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The min-sum algorithm is a message-passing algorithm which defines a num-
ber of messages m% y to be passed among nodes of the factor graph Fp
throughout the different iterations of the algorithm. We turn the algorithm into
a multi-agent negotiation protocol by mapping the graph nodes to agents. In
our example, we would map to each negotiating agent A and B the nodes cor-
responding to its own beliefs/preferences about the issue values, and the nodes
corresponding to the ¥ functions (in this case, incentivizing fairness) would be
mapped to a mediator agent M. The negotiation would progress via message
passing between factor and variable nodes assigned to different agents at each
iteration.

3 Scaling Up: BP in the Wi-Fi Negotiation Problem

In our previous work, we proposed Wi-Fi channel assignment as a realistic and
challenging benchmark for complex automated negotiations [3,4]. In this set-
ting, different Wi-Fi providers, acting as agents, have to collectively decide how
to distribute the channels used by their access points (APs) in order to minimize
interference between nodes and thus maximize the utility (i.e., network through-
put) for their clients, which will be different kinds of wireless devices (WDs). A
Wi-Fi negotiation scenario will be characterized by:

— A Wi-Fi association graph G, which is a geometric graph (i.e., nodes have spe-
cific positions in space) with two kinds of vertices, representing APs and WDs.
Edges in the graph represent the association of a particular WD to an AP. In
Fig. 1 we show a graphical representation of a scenario with 26 APs and 400
WDs.

— An interference graph I, which includes the same vertices as G in the same
positions in space, but in this case edges represent potential interferences
between devices, and edge weights account for the intensity of these interfer-
ences. For detailed description of the Wi-Fi interference model in this setting,
the reader is advised to check [13]. The corresponding graph for the afore-
mentioned scenario can be seen in Fig. 2.

— A mapping of access points to different providers, which will be the nego-
tiating agents. The goal of each agent will be to minimize the interference
suffered by its APs and their associated WDs. In this paper, we will assume
there are two providers.

This is a particularly interesting problem, since it belongs to the family of
Frequency Assignment Problems (which has been extensively studied from the
perspective of discrete optimization) and it is strongly related to the prominent
mathematical graph coloring problem [23] and to distributed constraint opti-
mization models [10]. In the following, we will formally describe the negotiation
problem, and the translation of the problem to the belief propagation model.

3.1 Negotiation Domain

For the scope of this work, we assume a multiattribute negotiation domain, where
a deal or solution to the problem is defined as the set of attributes (issues),
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Fig. 1. Wi-Fi association graph G for an scenario with 26 APs and 400 wireless devices.
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Fig. 2. Wi-Fi interference graph I for an scenario with 26 APs and 400 wireless devices.

and each one of them can be in a certain range. In our case, for a channel
assignment problem with n 4 p access points, a solution or deal S can be expressed
as S ={s;li €1,..,nap}, where s; € {1,...,11} represents the assignation of a
Wi-Fi channel to the i-th access point.

As stated above, we assume that there are two network providers or agents
(commonly Internet Service Providers, ISPs), thus APs belong to one of the
agents. Each provider only has control over the channel assignment for its own
access points. According to this situation, P = {p;, p2} will be the set of agents
that will negotiate the channel assignment. We find adequate to focus in the
two-provider case because there are more works in complex bilateral negotiations
than for the multilateral case (three or more agents).

Finally, each one of these agents p; will compute its utility U, for a certain
solution according to the model described in [4,13]. As we showed in our previous
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works, the problem settings (high cardinality of the solution space and attribute
interdependence) will make the utility functions highly complex, with multiple
local optima.

3.2 Channel Negotiation as a Factorized Optimization Problem

Given that U, depends on the sum of the interferences suffered by their APs
and their associated WDs, and that those interferences are caused by nearby
APs and WDs using the same channel to transmit, intuitively we need to avoid
using the same (or similar) channels in nearby devices. More specifically, we
have to avoid using “close” channels in devices whose associated vertices in the
interference graph I are connected, specially if the weight of the connecting edge
is high.

This is quite similar to the Threshold Coloring Problem (TSC) [19], which
is depicted in Fig.3. In this problem, we have an undirected graph and a set
of available colors (in the example, red, green and blue), with an associated
interference matrix, which assigns an interference value for the occurrence of
any pair of colors in any edge of the graph. The goal of the TSC problem is
to find a coloring which minimizes the maximum interference per node (the
optimal solutions for the example problem can be seen shadowed in the figure).
Our hypothesis is that, by translating the problem of channel assignment to this
problem, we will find suitable solutions in a reasonable time. We will have as
the available color set the different Wi-Fi channels, and as the color interference
matrix the co-channel interference index [13].

ise 4 1
® (1 1/21/4
|12 1 12
® \1/41/2 1 4y
1 1/2 1/4
e—e o0 o0 Q& ,
1/2 1 1/2
o—e o0—40 o0o—e /4
1/4 1/2 1 Ul
e—e e—0 eo—°
/4

Fig. 3. Example of the Threshold Spectrum Coloring problem (TSC). (Color figure
online)

The translation from the Wi-Fi channel negotiation problem to the TSC
problem is not straightforward. First of all, the variable/issue sets for both prob-
lems are different. TSC assumes all colorings are possible, while in Wi-Fi channel
negotiation only channels chosen by the APs are negotiated, since all WDs asso-
ciated to a given AP will use the same channel to communicate. To account for
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this, we propose to do a compactation of the interference graph I. That is, we
will derive a compact graph C from the graph I as follows:

— We will have a vertex in the graph C for every AP vertex in the graph I.

— Two vertices in C will be connected if and only if there was an edge in I; (a)
between them, (b) between one of the APs and one of the WDs associated to
the other AP, or (c) between WDs of the two APs.

Such a compact graph for the example given in Figs.1 and 2 is shown in
Fig. 4. In addition, we will introduce edge weights in graph C' according to two
different strategies:

— Uniform BP translation (BPu): we will assume that each existing edge
between vertices ¢ and j in the compact graph C' has an associated weight
w;; = 1. This is the simplest possible translation (all edges equal), which loses
most information from the interference graph I, so we expect it to give the
less optimal results, but also to be the most efficient in terms of computation
time.

— Weighted BP translation (BPw): in this case, we will assign to each edge
between vertices ¢ and j in the compact graph C a weight w;; equal to the
number of edges in graph I between them, between one of the APs and one of
the clients associated to the other AP, and between WDs of the two APs. This
is a reasonable choice, since it will prioritize the edges between APs which
have more potential interferences, but it is still a much more efficient choice
computationally than evaluating the real interference between APs and their
WDs.

The last step for the formalization is to translate the coloring of the compact
graph C' to a factorized optimization problem. To do this, we use our vertices
representing APs as variables (which can take different values depending on

1.0
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0.6 |

0.4}

0.2}

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 4. Compact graph C for an scenario with 26 APs and 400 wireless devices.
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which channel the AP uses to transmit) and the edges between pairs of vertices
(which represent interferences between APs) as constraints. According to this,
we define the corresponding functions as follows:

Pi(si) =0
Ve (si,s5) = wijc(s;, s5), YC = (i, )

That is, we use a constant zero value for each variable function, and we use
the product of the weight of the corresponding edge in the compact graph and
the co-channel interference between the chosen channels (see [13] for details)
for each factor function. With this formulation, we try to mitigate the impact of
using “close” channels in close APs, which is coherent with the Wi-Fi interference
model. It is worth noting that this formulation differs from the TSC problem,
given that here we try to minimize the sum of the contributions for all nodes
in the graph, while pure TSC aims to minimize the maximum contribution for
any single node in the graph. However, as shown in [19], sum minimization is a
good heuristic to minimize the maximum in this context, and therefore successful
techniques proposed for TSC can be used here as benchmarks.

Finally, we need to build the factor graph Fp of our problem, which is a
bipartite graph with variable nodes in one side of the partition and factor nodes
corresponding to the constraints in the other side of the partition. Links between
both partitions occur between a constraint and the variable nodes it refers to.
For instance, in the graph example given in Fig. 3, the resulting factor graph Fp
would be as shown in Fig. 5.

A A B C D

D AB ADB,CB,D

Fig. 5. Factor graph Fp (right) for our example TSC problem.

3.3 A Scalable Negotiation Using Belief Propagation

To solve the factorized optimization problem we have proposed for our Wi-Fi
negotiation scenario, we would have to apply the min-sum algorithm for BP [9].
The problem with applying directly the min-sum BP algorithm to our problem
is that the algorithm only has correctness and convergence guarantees when the
solution is unique and the factor graph is a tree. Although solution uniqueness
can be achieved with randomized weights as suggested in [9], most of our scenar-
ios do not create tree factor graphs. The usual junction tree technique used in
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machine learning to address this problem [25] is not applicable here, because it is
centralized, which is not scalable (neither desirable) for competitive negotiation
scenarios where sharing of private information should be minimized.

Taking this into account, to ensure convergence and correctness of the algo-
rithm, we propose to divide the factor graph into trees using a distributed,
gossip-inspired technique [5]. The technique we propose works as follows:

— All AP nodes in the compact graph C' are initialized to the unassigned state,
which means they do not belong to any tree.
— Nodes in unassigned state respond to the behaviour:

e Decide with probability p whether to start a new tree (therefore changing
their status to assigned) or to wait a random time.

e Upon receiving a message from an assigned neighbour (that is, a neighbour
already belonging to a tree), switch to assigned status and acknowledge the
membership to the tree.

— Nodes in assigned state respond to the behaviour:

e Decide with probability p whether to invite a random subset of its (not
already-invited) neighbors to its tree or to wait a random time.

This technique asynchronously divides the compact graph C' into a set of
disjoint trees, from which tree factor graphs can be derived so that BP converges.
Of course, when we work with the resulting set of trees, we lose the information
about the influencing factors ¥;; corresponding to components ¢; and c; which
are neighbors in the compact graph but have ended up in different trees. To
minimize the impact of this simplification, we iteratively introduce this effect
in the functions @; of the frontier nodes (that is, the nodes in a tree which
are neighbors of nodes in other trees). That is, the belief propagation process
is repeated several times in an iterative manner, and at each iteration K the
frontier nodes are assigned a variable function @X(s;) which is computed as

follows:
@K (si) Z U, sl,Af 1)
JEN()

Where R(7) is the set of neighbors of component ¢; in the compact graph and
§jK ~1 is the optimal assignment for neighbor c; for the previous execution of the
BP algorithm.

Computation of the &X functions is performed at each corresponding
provider agent for the AP 4. Computation of the LDC functions when APs i
and j belong to different providers is randomly as&gned to one of the provider

agents to avoid agent manipulation of the belief propagation process.
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Fig. 6. Polytechnic school building plan. (Color figure online)

4 Experimental Evaluation

To validate our approach and assess the contribution of our mechanisms, we have
conducted a set of experiments of the Wi-Fi real-world setting we used in [3],
which uses the real layout of the first floor plant of our University (Fig.6). The
real positions of deployed APs are displayed with green dots, ranging their signal
coverage from red (high coverage) to light blue (very low coverage). Note that
the center of the plan represents a central courtyard, so it has low signal cover-
age. For the position of WDs we have considered that we have users attending
classes in classrooms and also some students are located randomly in the build-
ing (resting, in the cafeteria, studying...). For this last group of students, we
have considered that there are 100 students randomly located in the building
following a uniform distribution. For the students in classrooms, we have tested
several scenarios varying randomly the ratio of classrooms being used (p, with
p €10.25,0.5,0.75,1.0]). As there are 48 classrooms in the building, we have con-
sidered scenarios with 12, 24, 36 and 48 classrooms. For each classroom, we have
deployed 25 students in each one randomly using a normal distribution around
the center of each classroom and a standard deviation normalized to the size of
the scenario of 0.05. In Table 1 we show a summary of the real-world scenarios
under study. Finally, as the specific random classrooms under use could affect
the results, we have tested three experiments for each value of p, so the total
number of deployments studied has been 12. In each setting, APs have been
randomly assigned to the two providers.

We are interested in evaluating the performance of BPu and BPw in com-
parison with the well-known technique called Simulated Annealing (SA) [12,16].
For a further description of how this technique has been deployed, see [4]. More
specifically, we are interested in evaluating the performance of these techniques
in terms of the normalized utility (U,) that they can achieve in a certain
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Table 1. Summary of scenarios of the real-world setting.

Scenario | p # Classrooms | # WD
1,2,3 025 12 400
4,5, 6 0.5 |12 700
7,8,9 0.75| 12 1000
10, 11, 12| 1.0 | 48 1300
0.34 0.34
0.324 0.324
0.3 0.3 4
0.28 4 0.28 4
0.26 4 0.26 4
= 0.24 = 0.24
0.224 0.224
0.2 0.2 4
0.18 4 BPu 0.18 4 BPu
0.164 —e—a BPw 0.16 4 -—e—eBPw
—x—x SA —*—X SA
0.14 T T T T T T T T T T T 0.14 T T T T T T T T T T T T
02 04 06 08 1 1.2 14 16 18 2 22 24 26 02 03 04 05 06 07 08 09 1 1.1 12 13 14 15 16
(a) Scenario 1. (b) Scenario 2.
0.34 0.3
0327 0284
0.3 4
0.26 4
0.28 4
0.261 0.24 4
=5 0.24 1 =5 0221
0.221 024
0.2
0.18 4
0.181 BPu —
0.16 o—o—a BPw 0.16 1 o—o—a BPw
x—%—xX SA pe—>*—x SA
0.14 T T T T T 0.14 T T T T T T T
0 0.5 1 15 2 25 3 0.5 1 1.5 2 25 3 3.5 4 4.5
(c) Scenario 3. (d) Scenario 4.
0.3 0.3
0287 0.28
0.26 4
0.26 4
0.24 4
0.224 0.24 4
= 0.2 =5 022
0.18 024
0.16 4
0.18 4
0.14 1 e BPU e BPU
0124 oo BPw 0.16 4 o—o—a BPw
——x SA pe——x SA
0.1 T T T T T T T 0.14 T T T T T T T
0.5 1 1.5 2 25 3 35 4 4.5 0.5 1 15 2 25 3 35 4 45 5
(e) Scenario 5. (f) Scenario 6.

Fig. 7. Normalized utility versus time for the different techniques.
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0.28 4 0.28 4
0.26 4
0.26 4
0.24 4

0224 0.24 4

0.224

= 0.
o1sd /—M R

U,

()

0.164

0.184
0.144 e <BPU e BPU
0124 oo BPw 0.16 oo BPw
——x SA ——x SA
0.1 T T T T T T T T 0.14 T T T T T T T T
1 15 2 25 3 35 4 4.5 5 1 1.5 2 2.5 3 35 4 4.5 5
(a) Scenario 7. (b) Scenario 8.
0.26 0.24
0.24 4 0.224
0.224 0.24
0.24 0.184
=S =S
0.18 //._,/A 0.164 - e
0.164 0.14 4
0.14 +—e—e BPu 012 o+—e— BPu
oo B o B
X—x—X SA —>—x SA
0.12 T T T T T T T T T 0.1 T T T T T T T T T
1 1.5 2 25 3 35 4 4.5 5 5.5 1 1.5 2 25 3 3.5 4 4.5 5 5.5 6
(c) Scenario 9. (d) Scenario 10.
0.26 0.26
0.24 4 0.24 4
0.224 0.224
0.24 0.24
S =5
0.184 0.184
0.164 0.16 4
0.14 Bru 0.14 —_— |
: o—o—0 BPw : o—o—a BPw
—*—X SA ¥—>—X SA
0.12 T T T T T T T 0.12 T T T T T T T
1 15 2 25 3 3.5 4 4.5 5 55 1 1.5 2 25 3 35 4 4.5 5 55
(e) Scenario 11. (f) Scenario 12.

Fig. 8. Normalized utility versus time for the different techniques.

computation time. The different values for the computation time have been
obtained running the techniques with a different number of iterations.

Note that the normalized utility is defined as the sum of utilities for all
nodes in the network (APs and WDs) divided by the graph order, i.e. divided
by the number of nodes in the graph. Figures7 and 8 show this comparison
for the 12 scenarios under study. Results show that, except for the shortest
runs where BP obtains worse results than SA, in almost all cases, BP is able to
obtain a better performance (higher U,,) than SA for the same computation time.
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Comparing BPu with BPw we can conclude that BPw always outperforms
BPu. This expected result is due to the fact that the compact graph of BPw
includes more information than its counterpart of BPu. As a consequence of
these results, we consider that the use of Belief Propagation, specially in its
BPw setting, is very useful, as its efficiency is higher than the well-known,
successful approach SA.

5 Conclusions and Future Work

Our research attempts to enable the use of complex automated negotiations
in the management of complex systems with network structure, which are of
increasing interest in many disciplines. One of the biggest challenges for this is
the scalability of complex negotiation mechanisms when facing the large utility
spaces and complex interdependencies of such systems. To address this chal-
lenge, in this paper we propose a novel perspective for the negotiation process as
competitive belief propagation, which maps naturally to settings with a graph
structure. We also propose an efficient mechanism to implement this competitive
belief propagation process in large settings, which takes advantage of gossip-like
techniques. Finally, we validate our approach on a realistic and challenging set-
ting: Wi-Fi channel negotiation. Experiments show that our approach achieves
better results that well-known successful nonlinear negotiation techniques in less
computation time, which is a significant advance for the success of negotiation
mechanisms in these settings.

Although our experiments yield satisfactory results, there is still plenty of
work to be done in this area. We are interested in evaluating more sophisticated
strategies than BPu and BPw for weighting the compact graph, in order to
get as close as possible to the real interference model without imposing too
much computational complexity in the mechanism. We want also to study the
influence of different graph properties (e.g. diameter) in the performance of the
BP techniques. Finally, we are interested in evaluating the strategic properties of
the mechanisms, to see how the belief propagation process performs when agents
are allowed to “lie” in their messages in order to try to influence the outcome of
the mechanism to their advantage.
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of Economy and Competitiveness grants TIN2016-80622-P, TIN2014-61627-EXP,
MTM2014-54207 and TEC2013-45183-R, and by the University of Alcala through
CCG2016/EXP-048.

References

1. An, B., Lesser, V., Sim, K.M.: Strategic agents for multi-resource negotiation.
Auton. Agent. Multi-Agent Syst. 23(1), 114-153 (2011)

2. Baarslag, T., Dirkzwager, A., Hindriks, K.V., Jonker, C.M.: The significance of
bidding, accepting and opponent modeling in automated negotiation. In: Proceed-
ings of the Twenty-First European Conference on Artificial Intelligence, pp. 27-32.
IOS Press (2014)



10.

11.

12.

13.

14.

15.

16.

17.

18.

Competitive BP to Efficiently Solve Complex Multi-agent Negotiations 15

De La Hoz, E., Gimenez-Guzman, J.M., Marsa-Maestre, 1., Orden, D.: A realistic
scenario for complex automated nonlinear negotiation: Wi-Fi channel assignment.
In: Proceedings of the the Ninth International Workshop on Agent-based Complex
Automated Negotiations (ACAN2016), Singapore (2016)

De La Hoz, E., Marsa-Maestre, 1., Gimenez-Guzman, J.M., Orden, D., Klein, M.:
Multi-agent nonlinear negotiation for Wi-Fi channel assignment. In: Proceedings of
the 16th International Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2017, International Foundation for Autonomous Agents and Multiagent
Systems, Sao Paulo, Brazil (2017)

Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance.
In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed
Computing, PODC 1987, New York, NY, USA, pp. 1-12 (1987)

Faratin, P., Sierra, C., Jennings, N.R.: Using similarity criteria to make issue trade-
offs in automated negotiations. Artif. Intell. 142(2), 205-237 (2002)

Fatima, S., Kraus, S., Wooldridge, M.: Principles of Automated Negotiation.
Cambridge University Press, Cambridge (2014)

Fujita, K., Ito, T., Klein, M.: A secure and fair protocol that addresses weak-
nesses of the nash bargaining solution in nonlinear negotiation. Group Decis. Negot.
21(1), 29-47 (2012)

Gamarnik, D., Shah, D., Wei, Y.: Belief propagation for min-cost network flow:
convergence and correctness. Oper. Res. 60(2), 410-428 (2012)

Grubshtein, A., Meisels, A.: A distributed cooperative approach for optimizing a
family of network games. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier,
M., Badica, C. (eds.) Intelligent Distributed Computing V: Proceedings of the 5th
International Symposium on Intelligent Distributed Computing - IDC 2011, pp.
49-62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24013-3_6
Hadfi, R., Ito, T.: Complex multi-issue negotiation using utility hyper-graphs.
JACIII 19(4), 514-522 (2015)

Hattori, H., Klein, M., Ito, T.: Using iterative narrowing to enable multi-party
negotiations with multiple interdependent issues. In: Proceedings of the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2007, pp. 247:1-247:3. ACM, New York (2007)

de la Hoz, E., Gimenez-Guzman, J.M., Marsa-Maestre, 1., Orden, D.: Automated
negotiation for resource assignment in wireless surveillance sensor networks. Sen-
sors 15(11), 29547-29568 (2015)

Kinney, R., Crucitti, P., Albert, R., Latora, V.: Modeling cascading failures in
the North American power grid. Eur. Phys. J. B-Condens. Matter Complex Syst.
46(1), 101-107 (2005)

Klein, M., Faratin, P., Sayama, H., Bar-Yam, Y.: Negotiating complex contracts.
Group Decis. Negot. 12(2), 111-125 (2003)

Lang, F., Fink, A.: Learning from the metaheuristics: protocols for automated
negotiations. Group Decis. Negot. 24(2), 299-332 (2015)

Lopez-Carmona, M.A., Marsa-Maestre, 1., Ibanez, G., Carral, J.A., Velasco, J.R.:
Improving trade-offs in automated bilateral negotiations for expressive and inex-
pressive scenarios. J. Intell. Fuzzy Syst. 21(3), 165-174 (2010)

Marsa-Maestre, 1., Lopez-Carmona, M.A., Velasco, J.R., de la Hoz, E.. Effec-
tive bidding and deal identification for negotiations in highly nonlinear scenar-
ios. In: Proceedings of the 8th International Conference on Autonomous Agents
and Multiagent Systems - Volume 2, AAMAS 2009, International Foundation for
Autonomous Agents and Multiagent Systems, Richland, SC, pp. 1057-1064 (2009)


https://doi.org/10.1007/978-3-642-24013-3_6

16

19.

20.

21.

22.

23.

24.

25.

I. Marsa-Maestre et al.

Orden, D., Marsd-Maestre, 1., Giménez-Guzman, J.M., de la Hoz, E.: Spec-
trum graph coloring and applications to WiFi channel assignment. CoRR
abs/1602.05038 (2016)

Osorio, C., Bierlaire, M.: Mitigating network congestion: analytical models, opti-
mization methods and their applications. In: 90th Annual Meeting, No. EPFL-
TALK-196049 (2011)

Pelikan, M., Sastry, K., Goldberg, D.E.: Multiobjective estimation of distribution
algorithms. In: Pelikan, M., Sastry, K., CanttPaz, E. (eds.) Scalable Optimization
via Probabilistic Modeling, pp. 223-248. Springer, Heidelberg (2006). https://doi.
org/10.1007/978-3-540-34954-9_10

Schaller, B.: New York City’s congestion pricing experience and implications for
road pricing acceptance in the United States. Transp. Pol. 17(4), 266—273 (2010)
Tuza, Z., Gutin, G., Plurnmer, M., Tucker, A., Burke, E., Werra, D., Kingston, J.:
Colorings and related topics. Handbook of Graph Theory. Discrete Mathematics
and Its Applications, pp. 340-483. CRC Press, Boca Raton (2003)

Vytelingum, P., Ramchurn, S.D., Voice, T.D., Rogers, A., Jennings, N.R.: Trading
agents for the smart electricity grid. In: Proceedings of the 9th International Con-
ference on Autonomous Agents and Multiagent Systems: Volume 1, International
Foundation for Autonomous Agents and Multiagent Systems, pp. 897-904 (2010)
Zheng, L., Mengshoel, O.: Optimizing parallel belief propagation in junction
treesusing regression. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2013, ACM, Chicago,
Illinois, USA, pp. 757-765 (2013)


https://doi.org/10.1007/978-3-540-34954-9_10
https://doi.org/10.1007/978-3-540-34954-9_10

	Competitive Belief Propagation to Efficiently Solve Complex Multi-agent Negotiations with Network Structure
	1 Introduction
	2 Negotiation as Competitive Belief Propagation
	2.1 Negotiation as a Factorized Optimization Problem
	2.2 The Negotiation Process as Belief Propagation

	3 Scaling Up: BP in the Wi-Fi Negotiation Problem
	3.1 Negotiation Domain
	3.2 Channel Negotiation as a Factorized Optimization Problem
	3.3 A Scalable Negotiation Using Belief Propagation

	4 Experimental Evaluation
	5 Conclusions and Future Work
	References




