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Abstract 16 
As rapid, holistic methods for similarity and description—such as sorting and projective 17 
mapping—have grown in popularity, a limiting factor is the number of samples that can be 18 
presented to subjects: more than 25 food samples decreases the quality and stability of results.  19 
While incomplete-block designs could address this, their use has not been developed for these 20 
holistic methods.  In this paper we present an empirical investigation into the use of incomplete-21 
block designs with free sorting and the newer free linking.  We compare these two methods 22 
because while their results are comparable, the cognitive tasks are different, and thus their 23 
suitability for incomplete-block designs may differ.  We evaluated the effects of incomplete-block 24 
designs in two studies.  In Study 1, 20 subjects evaluated 6/10 chocolate bars by free linking in 25 
an incomplete-block design, with each subject completing 2 blocks; results were compared to a 26 
complete-block evaluation of the 10 bars by free sorting and free linking.  In Study 2, a total of 27 
90 subjects evaluated 62 terms from a chocolate flavor-wheel in 3 conditions (between 28 
subjects): free sorting with complete blocks (N = 30, all 62 terms) and free sorting (N = 30) or 29 
free linking (N = 30) with 3 incomplete blocks of 16/62 terms.  We introduce a novel method to 30 
evaluate stability for the incomplete-block designs that we call “pairwise simulation.”  From 31 
Study 1, we find that pairwise simulation provides adequate stability estimates and that, with 32 
sufficient pairwise cooccurrences, free linking with incomplete blocks produces results that are 33 
comparable to free sorting or linking with complete blocks.  From Study 2, we demonstrate that  34 
free linking with incomplete blocks can produce high quality results from a large sample set, 35 
maintaining the increased discrimination capacity that marks free linking in general, and that 36 
with incomplete blocks, free linking is likely to be more stable than free sorting.  This research 37 
demonstrates that incomplete-block designs can be used with free linking, and also provides a 38 
new, effective method through pairwise simulation for evaluating stability with incomplete-block 39 
designs, which cannot be resampled using standard bootstrapping approaches. 40 
 41 
1. Introduction 42 

Over the last several decades there has been a strong tendency in sensory science 43 
towards the use of rapid, “holistic” methods for understanding similarities and even sensory 44 
properties in a set of samples (e.g., Delarue & Lawlor, 2023; Valentin et al., 2012; Varela & 45 
Ares, 2014).  These methods have many advantages: typically they require only a single data-46 
collection session per subject, they produce data that is often quite rich, and their analysis is 47 
reasonably straightforward.  Among the many rapid methods that have seen their popularity 48 
grow, free sorting and projective mapping (Valentin et al., 2018) are among the most popular 49 
because of their simplicity: they estimate an overall (dis)similarity structure from a comparatively 50 
large sample set in a single session, and can even generate rough descriptive profiles and 51 
identify groups among the samples using various clustering and partitioning analyses. 52 
 53 
1.1. Holistic designs and incomplete blocks 54 

A key challenge in the use of rapid, holistic methods, like free sorting or projective 55 
mapping for sensory evaluation of food is that these methods typically present all samples to 56 
each subject simultaneously.  In cognitive psychology, where many of these methods originated 57 
(Coxon, 1999; Faye et al., 2004), this is not a major problem: there are reports of the successful 58 
application of free sorting to sample sets of more than 100 words or images (Gaillard et al., 59 
2011).  However, for food samples, which must be tasted or smelled, panelist performance and 60 
consistency quickly degrade when more than about 20 samples are presented (Chollet et al., 61 
2011; Kessinger et al., 2020; Lahne et al., 2022).  While no studies have formally explored this, 62 
it is reasonable to expect that the difference stems from the qualitative differences in sensory 63 
modalities between visual/lexical stimuli (in cognitive psychology) and aroma/taste/flavor stimuli 64 
(in sensory science): in the first case subjects have an easy ability to remind themselves of the 65 
characteristics of the samples they have already evaluated by visually returning to them, 66 



whereas in the second case the chemical senses do not allow ready simultaneous comparison 67 
of multiple samples or non-fatiguing sample re-evaluation (Lawless & Heymann, 2010).  Put 68 
very simply, panelists cannot make good judgments group-wise of similarity when they are 69 
overwhelmed with food samples. 70 

Rapid, holistic methods are often suggested as alternatives to methods of Descriptive 71 
Analysis (DA; e.g., Faye et al., 2004; Moussaoui & Varela, 2010; Nestrud & Lawless, 2010; 72 
Valentin et al., 2012, 2018).  In DA, studies will sometimes include more samples than can be 73 
evaluated by a single subject in one session, but this problem is dealt with by the application of 74 
balanced incomplete-block designs to the presentation order of samples to subjects (Heymann 75 
et al., 2014; Lawless & Heymann, 2010).  For DA, this presents no problems, because subjects 76 
are comparing the samples’ attributes to the reference standards on which they have been 77 
trained, rather than to other samples.  This is not the case for the rapid, holistic methods we 78 
consider here, in which subjects, without prior training, only make comparisons between the 79 
samples that have been presented.  To our knowledge, there are no publications systematically 80 
exploring the application of incomplete-block designs to sample presentation for rapid, holistic 81 
methods, although some recent publications point towards the possibility of such an approach 82 
(Courcoux et al., 2023).  Moreover, an early study on the application of incomplete designs to 83 
an earlier method in cognitive psychology (on so-called “triad tests” for similarity) yielded 84 
promising results, indicating that incomplete-block designs for sample presentation may be 85 
compatible with studies of holistic similarity (Burton, 2003; Burton & Nerlove, 1976). 86 

Two key problems need to be considered in the application of incomplete-block designs 87 
to rapid, holistic methods: the problem of “prototypical” samples and the problem of data 88 
structure.  By “prototype” we mean samples that would be expected to define a new category 89 
(here we are using “prototype” to refer to a more “representative” object in the sense of Mervis & 90 
Rosch, 1981): a simple example is given in Figure 1a, where in a visual sort of 10 samples, 9 91 
black and 1 red, the red sample clearly defines a new category by itself.  A more realistic 92 
example might be in a study of chocolate bars, in which all but one bar are dark chocolate: the 93 
single milk-chocolate bar would be prototypical of a different category.  In an incomplete-block 94 
design this would present a potential problem, because we would expect subjects presented 95 
with blocks without the prototypical sample to make qualitatively different judgments of 96 
underlying groups (categories) formed by the presented samples than those who receive blocks 97 
containing the prototype (See Figure 1a for a schematic example of this paradigm).   98 

In principle, a fully-balanced incomplete-block design (such as those described in 99 
Gacula Jr. et al., 2009), which ensures that all pairs of samples are presented equally often 100 
across the entire design, would avoid this problem for the overall data structure, but in practice 101 
these designs are rarely feasible for two reasons.  First, they require a great increase in the 102 
number of subjects required for the study (Chollet et al., 2011; Gacula Jr. et al., 2009), negating 103 
one of the key advantages of these rapid holistic methods (Courcoux et al., 2023; Valentin et al., 104 
2012, 2018).  Simply put, for most large-sample studies for which incomplete blocks might be of 105 
interest to the sensory analyst, the required number of subjects for a fully balanced incomplete-106 
block design will often not be practical for reasons of time or budget. Second, and perhaps even 107 
more importantly, the basic combinatorics underlying such designs guarantee that a fully 108 
balanced design does not exist for all (or even many) possible study designs (Kuehl, 2000), and 109 
so a partially balanced design must be used instead (Gacula Jr. et al., 2009; Kuehl, 2000), 110 
which will be subject to the problem of prototypes described above. 111 

The second problem is one of data structure.  Typically, holistic designs generate data 112 
that represent the pairwise relationships between each presented sample.  In the case of free 113 
sorting, for every pair of samples there is a binary indicator of whether they are in the same 114 
group; for projective mapping, for every pair of samples there is a Euclidean distance, where 115 
distance represents dissimilarity.  When a subject is presented with an incomplete block, their 116 
data will then include missing values for when one or both of a pair of samples is not presented 117 



in that block, and it is not clear what should be done with this missing data.  Should it be treated 118 
as dissimilarity (a “0” in free sorting, or an infinite distance in projective mapping)?  Almost 119 
surely not.  Should these missing data somehow be imputed?  Because the generative process 120 
for sorting data remains poorly explored (Hamilton & Lahne, 2020), this is not an easy task.  121 
Should they simply be dropped?  Unless the incomplete blocks are perfectly balanced, which is 122 
unlikely for realistic sample sizes (Chollet et al., 2014), this seems likely to bias the analysis in 123 
unpredictable ways.   124 
 125 
1.2. Free linking and incomplete blocks 126 

Recently, we proposed a new rapid, holistic method which we dubbed the “free-linking 127 
task” (Lahne et al., 2022).  This task resembles the free-sorting task, except that instead of 128 
making groups of similar samples, the subject is asked to consider similarity between each pair 129 
of samples (see schematic example in Figure 1c), by linking similar pairs in a physical or virtual 130 
diagram representing the samples.  The data generated by free linking is an undirected 131 
similarity graph (Arney & Horton, 2013; Gross et al., 2013); in the previous study, we described 132 
how this can be seen as a generalization of the dissimilarity matrix in free sorting, and can be 133 
transformed into a dissimilarity matrix by a calculation on the graph distance (Chartrand & 134 
Zhang, 2014; Lahne et al., 2022).  In free sorting, (dis)similarity is a fully transitive and binary 135 
property: if A is similar to B, and B is similar to C, then A must be similar to C in the same 136 
degree.  In free linking, by contrast, similarity is at least ordinal, as linking A to B and B to C 137 
means there is an indirect link between A and C, not that A is directly similar to C.  We 138 
demonstrated that, despite these differences, free linking produces results that are overall 139 
comparable to free sorting, but which represent a more realistic model of cognitive judgments 140 
around similarity (Lahne et al., 2022). Thus, free linking can also be seen as a single-pass 141 
alternative to multiple- or hierarchical-free sorting, which generate equivalent cophenetic 142 
distances among samples (Courcoux et al., 2012; Dehlholm, 2015; Lahne et al., 2022).   143 

Here, we propose that these two key differences between free linking and sorting—144 
pairwise similarity and the consequent lack of transitivity in similarity judgments—should make 145 
free linking a better candidate for application with incomplete-block designs.  First off, the 146 
cognitive task of pairwise comparison should ameliorate the problem of prototypes: the 147 
presence or absence of a prototypical sample should not distort other pairwise similarity 148 
judgments, or at least should distort these judgments to a much lesser degree than in free 149 
sorting (see Figure 1c).   150 

Second, the missing-value problem is less serious because the data produced by free 151 
linking is a less restricted form of graph data than that produced by free sorting.  While both 152 
types of study produce individual and consensus results that can be treated as graph data, the 153 
results on the individual level are produced with different restrictions (Lahne, 2020; Lahne et al., 154 
2022; Orden et al., 2019).  In free linking, an individuals’ results can be represented as a graph 155 
with edges representing a similarity judgment; the form of the graph is unrestricted by the 156 
method, and so, simply put, the union of two graphs from free linking that contain some (but not 157 
all) of the same nodes (samples) is simply another (weighted) graph, which can then be 158 
analyzed in the same way (Gross et al., 2013).  On the other hand, free sorting produces 159 
partition data, which when represented as a graph is either a fully connected graph or a set of 160 
disjoint cliques.  In other words, an individual’s free-sorting result is constrained to a particular 161 
form: an adjacency matrix made up of the direct sum of all-1 or all-0 matrices (Abdi et al., 2007; 162 
Lipschutz & Lipson, 2017).  The sum of two or more distinct partitions does not retain this 163 
particular structure (a direct sum of all-1 or all-0 matrices), and so is no longer a partition of 164 
disjoint cliques (see Figure 1b-c).   165 

Therefore, we believe that free linking may be a better candidate for application with 166 
incomplete-block designs than free sorting.  Specifically, in the context of incomplete-block 167 
designs, we would expect that groups of samples identified by free linking would be more stable 168 



than those from free sorting—because the step of aggregating the individual results produces 169 
less distortion when the constraints imposed by free sorting are relaxed—and that the groups 170 
would discriminate better both quantitatively (finding more groups) and qualitatively (having 171 
groups that are better explained by the samples’ intrinsic qualities).  172 

 173 
1.3. Objective and aims 174 

To explore the potential usefulness of incomplete blocks for rapid, holistic methods, and 175 
the potential suitability of the novel free-linking task for this particular problem, we present two 176 
studies that apply free sorting and free linking to incomplete blocks.  In Study 1, we investigate 177 
the comparative stability of the free-linking task with incomplete blocks against the free-linking 178 
and free-sorting tasks with complete blocks, using a set of K = 10 chocolate samples evaluated 179 
by mouth by N = 20 subjects.  In Study 2, we compare the actual sample resolution 180 
(discrimination) and stability of the free-linking and free-sorting tasks with the same incomplete 181 
blocks against the free-sorting task with complete blocks in a much larger sample set of K = 62 182 
descriptive terms for chocolate from the Cocoa Wheel of Excellence (Cocoa of Excellence 183 
Technical Committee, 2021; Seguine & Sukha, 2015) with N = 90 subjects.  Across these two 184 
experiments we will compare incomplete free-linking to incomplete free-sorting as well as to 185 
complete free-linking and complete free-sorting, using graph statistics (Gross et al., 2013; 186 
Lahne et al., 2022), Jaccard stability (Yu et al., 2019), and additive-tree partitioning (Koenig et 187 
al., 2021). 188 
 189 
2. Materials and Methods 190 

Below we report two studies that, while substantially similar in that they compared free-191 
linking with incomplete blocks to other holistic designs, varied substantially in other respects.  192 
One key common aspect of both studies was that, in each study, subjects in the incomplete-193 
block conditions completed multiple blocks in order to reach the required number of blocks for 194 
each partially balanced incomplete-block design (Chollet et al., 2011; Kuehl, 2000).  While this 195 
may have familiarized subjects with samples, previous research has shown that replication of 196 
sorting tasks with the same subjects and samples in fact improves results (Lahne et al., 2016), 197 
and therefore it is very likely that the same result hold for free linking.   198 

Beyond this shared methodology, we report each study separately to help the reader 199 
follow what was done for each. 200 
 201 
2.1. Study 1: Chocolate  202 

The goal of the first, smaller study was to determine how a rapid, holistic method with an 203 
incomplete-block design would compare to a standard, rapid holistic method.  In order to do this, 204 
we repeated the free-linking task with the same chocolate bars reported in Lahne et al. (2022) 205 
and new subjects, but applied an incomplete-block design to the sample presentation, as 206 
described below. This provided data on a small sample set which could feasibly be analyzed by 207 
both complete and incomplete-block designs (Chollet et al., 2014). 208 

We compare the data from the free linking with incomplete blocks to the results reported 209 
in Lahne et al. (2022). 210 
 211 
2.1.1. Study 1: Subjects 212 

In the original study, 63 subjects (49 female, 14 male, average age 34 years: Lahne et 213 
al., 2022) completed a free-linking and a free-sorting task, and their data is reused here.  An 214 
additional 20 subjects were recruited from the Virginia Tech population in Blacksburg, VA (5 215 
male, 13 female, 2 nonreporting, average age 22.5 years).  Subjects were not given monetary 216 
compensation. 217 

Both the new study and the original study were approved by the Virginia Tech Human 218 
Research Protection Program Institutional Review Board (IRB #s 19-1030, 21-858). 219 



 220 
2.1.2. Study 1: Samples 221 

Samples were the same 10 chocolate bars as used in the original study (Lahne et al., 222 
2022), and are reported in Table 1 here. 223 
 224 
2.1.3. Study 1: Experimental design 225 

A partially balanced incomplete-block design was generated using the 226 
crossdes::find.BIB() function for R (R Core Team, 2023; Sailer, 2022).  Specifically, we 227 
generated a design with the 10 chocolate samples as treatments, 40 blocks, and 6 treatments 228 
per block.  In this design each sample was evaluated 24 times, and each pair of samples 229 
cooccurred between 12 and 14 times.  Each subject completed 2 blocks in a single session in 230 
order to complete the required partially balanced incomplete-block design.   231 

Each subject completed a free-linking task with each block of 6 chocolate samples.  232 
Samples in a block were presented simultaneously, in randomized order on the sampling tray, 233 
without identifying characteristics, in sensory booths under standard conditions for sensory 234 
evaluations (Lawless & Heymann, 2010).  Subjects were provided with water and unsalted 235 
crackers ad libitum, and asked to refresh their palates in-between blocks.  Subjects recorded 236 
their responses by drawing lines connecting similar samples in pencil on paper templates 237 
provided to them, and the results were manually transcribed into edgelists (Kolaczyk & Csárdi, 238 
2014) by the researchers. 239 

The experimental design for the data from the complete free-linking and free-sorting 240 
tasks with the same chocolate-bar samples are described in Lahne et al. (2022).   241 
 242 
2.2. Study 2: Terms from the Cocoa Wheel of Excellence 243 

The goal of the second study was to determine the applicability and stability of rapid, 244 
holistic methods (free sorting and linking) in a realistically large sample set.  In order to 245 
accomplish this, we used words as samples (following Koenig et al., 2020, 2021) so as to allow 246 
for comparison of the results of sorting and linking with incomplete and complete sample blocks. 247 

In this study, we used 62 terms from a “flavor wheel” for chocolate quality evaluation 248 
used in industry (Cocoa of Excellence Technical Committee, 2021; Eskes et al., 2012; Seguine 249 
& Sukha, 2015).  This gave us a large sample set of terms that had a “true” structure against 250 
which we could compare our results.  We also were confident that the terms from the wheel 251 
would not exceed subjects’ ability to evaluate using free sorting (Koenig et al., 2021). 252 
 253 
2.2.1. Study 2: Subjects 254 

Subjects were recruited online through mailing lists maintained by the Virginia Tech 255 
Food Science & Technology Department, as well as through snowball sampling.  Subjects were 256 
not given monetary or other compensation.  Subjects were screened for frequency of chocolate 257 
consumption, and had to report consuming chocolate at least once per month in order to 258 
participate. 259 

In total, 255 subjects passed this initial screening and were directed into the study (166 260 
female, 40 male, 4 non-binary, and 3 preferred not to answer).  However, due to unexpected 261 
reboots affecting the SensoGraph hosting server, we will analyze complete data for only 30 262 
subjects for each of the three possible treatments detailed below in section 2.2.3 (total N = 90, 263 
N = 30 per condition), and cannot directly link the demographic data to the sensory data.  We 264 
believe that given the nature of this study this link is not important, and because the data loss 265 
was completely at random the reported demographic data is representative. 266 
 267 
2.2.2. Study 2: Samples 268 

Samples were the terms listed on the Cocoa Wheel of Excellence (Seguine & Sukha, 269 
2015), the standard sensory-lexicon wheel for cocoa-quality judging.  We used the terms from 270 



the wheel directly, but split segments of the wheel with multiple terms into individual terms (e.g., 271 
“Earthy / Mushroom / Moss / Woodsy” was treated as 4 terms: “Earthy”, “Mushroom”, etc.)   We 272 
also clarified terms that did not make sense in isolation from the wheel structure (e.g., changed 273 
“Yellow” as a subcategory of the “Fruity” category to “Yellow Fruit”).  This yielded a total of 62 274 
terms, listed in Table 2.  Samples were presented through the various software terminals as 275 
plain terms, with no added definition or context. 276 
 277 
2.2.3. Study 2: Experimental design 278 

Through an online recruitment survey in Qualtrics (Provo, UT, USA), subjects were 279 
randomly assigned to one of 3 possible treatments: a free-sorting task with a complete-block 280 
design, a free-sorting task with an incomplete-block design, or a free-linking task with an 281 
incomplete-block design.  We did not conduct a free-linking task with a complete-block design, 282 
because previous research suggests results would be very similar to the free sorting with 283 
complete blocks at the cost of much higher subject fatigue (Lahne et al., 2022). 284 

In the free sorting with a complete-block design, subjects completed a typical free-285 
sorting task (Chollet et al., 2014) with all 62 terms from the Cocoa of Excellence Wheel in a 286 
single block.  Subjects completed the task online through Compusense Cloud (Guelph, ON, 287 
Canada).  Subjects were constrained to make at least 2 groups of samples and no more than 61 288 
groups, but otherwise could use their own criteria. 289 

For the two treatments with incomplete-block designs, the same sample-presentation 290 
design was used.  A partially balanced incomplete-block design was generated using the 291 
crossdes::find.BIB() function for R.  Specifically, we generated a design for the 62 292 
samples with 93 blocks of 16 samples each.  Each subject completed 3 blocks of 16 samples.  293 
Each block was a single sorting or linking task (dependent on the between-subjects condition), 294 
in which subjects received all 16 samples from the specific block simultaneously, and evaluated 295 
their similarities according to the appropriate methodology. 296 

Because of the data loss described above (section 2.2.1), in incomplete linking and 297 
incomplete sorting each sample was presented a minimum of 21 and a maximum of 24 times, 298 
and each pair of samples co-occurred between 3 and 8 times.  A plot of the pairwise co-299 
occurrences is presented in Figure 2.  For complete sorting, of course, each sample was 300 
presented 30 times and each pair co-occurred 30 times. 301 

For the free-sorting with incomplete blocks, subjects completed a total of 3 free-sorting 302 
tasks (1 for each block of 16 samples) using Compusense Cloud.  Subjects were constrained to 303 
make at least 2 groups of samples and no more than 15 groups, but could otherwise use their 304 
own criteria.   305 

For the free-linking task with incomplete blocks, subjects completed a total of 3 free-306 
linking tasks (1 for each block of 16 samples) using SensoGraph (Orden et al., 2019; Orden & 307 
Tejedor-Romero, n.d.).  Subjects were constrained to draw at least 1 link between 2 samples, 308 
but could otherwise use their own criteria. 309 
 310 
2.3. Data analysis 311 

While Studies 1 and 2 had slightly different goals, the overall analytical strategy for both 312 
was quite similar.  First, all results were converted into graphs representing judgments of 313 
similarity. Then, additive trees (Abdi, 1990) representing the consensus similarities were 314 
partitioned (Koenig et al., 2021) to determine groupings.  Summary statistics for similarity 315 
graphs and additive trees were examined as overall indicators of consensus quality. Finally, 316 
resampling and/or simulation approaches (Yu et al., 2019) were used to determine the stability 317 
of the groupings found through additive-tree partitioning.  All data analysis was conducted in R 318 
4.3.0 (R Core Team, 2023). Details for each step of the process follow.  319 

As described above in sections 1.1 and 1.2, free-sorting and free-linking tasks generate 320 
data that can be treated as undirected graphs (Gross et al., 2013; Kolaczyk & Csárdi, 2014).  A 321 



graph, in this context, is a data structure in which the samples are represented as “nodes” 322 
(vertices in the graph) that are connected by “links” (edges in the graph); the links give 323 
information about whether a subject considers any given pair of samples to be similar (Lahne, 324 
2020; Lahne et al., 2022; Orden et al., 2019).  If a pair of samples is shown as two nodes that 325 
are not directly connected by a link, they were never judged as similar by any subjects in the 326 
study.  Individual subjects’ graphs can be summed to give a consensus, weighted graph with 327 
edge weights representing the number of times two samples are judged to be similar.  Key 328 
graph statistics for understanding quality in sorting and linking tasks are degree—representing 329 
the number of samples each sample is considered similar to—and the number of disjoint 330 
components (disconnected subgraphs) in each subjects’ response, which gives insight into the 331 
overall transitivity of a subjects’ similarity judgments (see section 1.2) (Gross et al., 2013); we 332 
do not use a calculation of local or general transitivity directly because those measures are, by 333 
definition, either 0 or 1 for free-sorting data (Lahne et al., 2022).  These analyses were 334 
conducted using the igraph (Csardi & Nepusz, 2006)and tidygraph packages (Pedersen, 335 
2023).  336 

In our previous paper, we proposed that consensus graph (dis)similarities could be 337 
calculated using a function derived from graph distance on individual subjects’ similarity 338 
matrices followed by a summation across all subjects to get a consensus “graph dissimilarity” 339 
(Lahne et al., 2022).  In brief, graph distance is defined as the number of links between any 2 340 
nodes in a graph, and is in the range [1,∞), with the two extremes being achieved when two 341 
nodes are directly connected or when there is no path between nodes, respectively.  In Lahne et 342 
al. (2022) we showed how to convert this distance into a dissimilarity in the range of [0,1] 343 
appropriate for analysis by typical methods for rapid, holistic methods.  In this paper we use 344 
these dissimilarities as the basis for additive-tree representations (Abdi, 1990) of the consensus 345 
using the ape::nj() function (Paradis & Schliep, 2019).  Additive trees are an effective 346 
representation of free-sorting data that provide a graph representation of distance emphasizing 347 
groupings of samples, which is the key focus of the current study (Abdi, 1990; Chollet et al., 348 
2011; Koenig et al., 2020, 2021).  From these additive trees we generate consensus partitions 349 
using the additive-tree recursive partitioning algorithm using the 350 
AddDistTreeSplit::recursive_partioning() function (Koenig et al., 2021), with the 351 
default LengthRatio criterion of 0.6 (Koenig et al., 2021).   352 

In additive trees based on judgments of (dis)similarity, total edge length between two 353 
nodes represents the observed similarity between those two samples (Abdi, 1990): longer total 354 
edge lengths indicate more dissimilar samples.  Trees can be classified as “caterpillar” or “star” 355 
shapes: caterpillar-shaped trees have less well-defined branches, often consisting of many 356 
groups formed “step-wise”, whereas star-shaped trees represent a more binary, “group of 357 
groups” formation (Mir et al., 2013).  This shape tendency can be quantified through the Total 358 
Cophenetic Index (TCI), which for a tree with 𝐾 nodes (samples), ranges from 0 to )!"*, where 359 
more caterpillar-shaped graphs have higher TCIs.  For free sorting and linking, a star-shaped 360 
tree represents more well-defined (discriminative) groupings. 361 

In their original paper on additive-tree recursive partitioning, Koenig et al (2021) 362 
proposed using measures of cohesion and isolation to evaluate the stability of recursive 363 
partitioning, but while conceptually these measures are sensible, we were unable to replicate 364 
the calculations given by the original authors.  Here, we use Jaccard stability instead (Yu et al., 365 
2019).  Briefly, Jaccard stability measures partitioning stability from a sample/item-wise 366 
perspective based on the original partition of the data.  In the original partition, each sample is in 367 
a partition (group) with some other samples. If the partition is stable, after either resampling (as 368 
in bootstrapping) or another simulation method (such as our new approach in section 2.3.1), 369 
each sample should ideally be in a group with and only with the same samples as in the original 370 
partition.  Jaccard stability gives a numerical representation of this quality bounded within [0,1]: 371 



stability of 0 means that a sample is never with the same samples in different simulations, while 372 
1 means that it is always with only the same samples.  Thus, Jaccard stability combines the 373 
same information as Koenig et al.’s  (2021) cohesion and isolation, but should be less 374 
vulnerable to bias from too many true negatives than another combined statistic they suggest 375 
originally (i.e., the Rand Index: Qannari et al., 2014).  However, before it is possible to calculate 376 
Jaccard (or any other) stability measures, we must propose a method to effectively resample or 377 
(more accurately) simulate the data from incomplete blocks. 378 

 379 
2.3.1. Simulation strategy 380 

The problem of resampling data from partially balanced incomplete-block designs is not 381 
trivial, and to our knowledge there is no one, accepted method for doing so (Berry et al., 2021).  382 
In a typical bootstrap on data with a block structure (e.g., the one proposed by Koenig et al. 383 
(2021) or Yu et al. (2019)), a resampled dataset is generated by randomly drawing a sample of 384 
complete blocks from the original dataset.  In the case of sensory evaluation typically the unit 385 
which is considered as a “block” is the subject, so that sensory scientists resample on the 386 
subjects: a resampled dataset will include 0, 1, or many replicates of a subjects’ original 387 
responses (Abdi et al., 2009).  However, when the data are generated from an incomplete-block 388 
design this is no longer feasible for two, related reasons.  First, resampling on subjects 389 
obviously does not guarantee the sample-wise or pairwise balance from the original incomplete-390 
block design, and second, as a consequence, the missing values (described in section 1.1), 391 
which stem from a missing pairwise co-occurrence and therefore are compensated for in the 392 
original design, will propagate through some non-zero number of the resampled designs. 393 
Thus, it was necessary to design a novel approach to simulating data that would generate 394 
plausible datasets from the original data while still respecting the original incomplete-block 395 
design.   396 

As described in section 2.3, the consensus (dis)similarity data from free sorting or linking 397 
is representable as a graph, with samples as nodes and the observed similarity between 398 
samples as links.  More specifically, the links can be given weights equal to the proportion of 399 
observed similarity judgments to total presented co-occurrences, making them weighted edges 400 
(Kolaczyk & Csárdi, 2014).  Such a graph, representing the observed results of the incomplete 401 
linking from Study 1, is shown in Figure 3a. 402 

This representation allows for simulating from these incomplete blocks in a fashion that 403 
will avoid the paired problems described above.  Specifically, in order to simulate from the 404 
observed data, represented as the weighted graph in Figure 3a, we follow a two-step procedure: 405 
selected nodes (samples) and simulating edges between the selected nodes (similarity 406 
judgments).  Nodes could be selected completely at random, but the problem of respecting the 407 
generated incomplete-block design can be solved by selecting according to the original 408 
incomplete-block design: for each simulated dataset of the same size as the original we will 409 
select nodes according to each block in the incomplete-block design.  This will guarantee that 410 
we have the same sample occurrence and pairwise cooccurrence in each simulation as in the 411 
original design.   412 

Once nodes are selected for a particular block (Figure 3b), for each edge in the graph a 413 
random draw from the uniform distribution (over [0,1], for convenience call it 𝑝) is compared to 414 
the observed weight of that edge (the proportion of times the two samples were judged to be 415 
similar, for convenience call it 𝑝#).  If 𝑝 ≤ 𝑝#, that edge will be retained in the simulated similarity 416 
graph (see Figure 3c).  Thus, each possible similarity (edge) between two co-occuring samples 417 
(nodes) will be observed in a simulated block with the same probability as the observed results.  418 
A full simulation of the same size as the original data is obtained by running through the entire 419 
incomplete-block design; the entire process can then be repeated some large number of times 420 
(typically 𝑖 = 1000) in order to generate a set of simulated datasets while respecting the 421 
incomplete-block design.   422 



An example of this process applied to Study 1, with the nodes labeled with the blinding 423 
codes assigned to the samples used for readability, is given in Figure 3. 424 

 425 
2.4. Data and code availability 426 

All data analysis was conducted in R.  Data and code to replicate the results shown in 427 
this manuscript are available at https://github.com/jlahne/incomplete-linking. 428 
 429 
3. Results 430 
 431 
3.1. Study 1 results 432 

In Study 1, we extended the experiment with chocolate samples described in Lahne et 433 
al. (2022) with 20 new subjects using incomplete-block presentations.  The overall results from 434 
the new data, as well as the original results, are presented in Figure 4 as additive trees.  The 435 
free-linking task with incomplete blocks (Figure 4c) gave results that were quite similar to the 436 
results from the original free-linking and free-sorting with complete blocks (respectively, Figures 437 
4b and 4a).  This can be seen by comparing cluster membership and overall structure in Figure 438 
4, and is confirmed by using Generalized Procrustes Analyses (GPA) to check the alignment of 439 
the 3 study configurations from Multidimensional Scaling (RV coefficients between the 3 440 
configurations range between 0.92 and 0.98; full results not shown, but available in the 441 
manuscript code, see section 2.4).  A notable exception is the Endangered Species Milk 442 
Chocolate sample, which appears to be appropriate given that this sample was an outlier in the 443 
sample set: it is a milk chocolate with an unusually high cocoa-content (48%) that was judged 444 
highly dissimilar to all other samples in the original study (Lahne et al., 2022, Figure 5).  The 445 
Jaccard stability, discussed below and in Figure 6, helps explain and enrich this observation.  446 
We might consider this sample to be an example of a category “prototype” as discussed in 447 
section 1.1.  448 

The graph statistics for the (dis)similarity graphs generated by subjects in Study 1 are 449 
given in Table 3 on a per-block basis.  As described in section 2.3,  the degree of a graph 450 
indicates the tendency, on a per-node basis, for samples to be sorted or linked together with 451 
more other samples, and the number of components (disconnected subgraphs) gives an idea of 452 
how many distinct groups subjects tend to make.  From Table 3 it is apparent that free linking 453 
with incomplete blocks maintains the advantages of free linking in general, as reported in Lahne 454 
et al. (2022): degree remains lower for incomplete linking than either sorting method, whereas 455 
the number of distinct components remains the same or higher. 456 

We evaluated the stability of the results from both the new and the original results using 457 
the Jaccard stability metric (Yu et al., 2019).  In addition, we compared two methods for 458 
generating the data for stability calculations: “classic” bootstrapping on a per-subject basis (Abdi 459 
et al., 2009), which can only be applied to the data from complete-block designs, and our novel 460 
“pairwise” simulation approach (described in section  2.3.1), which can be applied to both 461 
complete and incomplete-block designs.  As Yu et al. (2019) note, it is also possible to assess 462 
stability on a per-group level by taking the arithmetic mean within groups of a particular partition; 463 
individual stabilities are shown in Figure 5, but given the low number of samples it is possible for 464 
the reader to ascertain group stabilities visually.  465 

First, it is worthwhile to compare the “bootstrap” and “pairwise” stabilities for the 466 
complete-block designs in Figure 5.  For free linking with complete blocks, the pairwise 467 
simulation produces per-sample and per-groups stabilities that are extremely similar to classical 468 
resampling estimates with bootstrapping; for complete sorting, the estimated per-sample and 469 
per-group stability tends to be somewhat higher with the pairwise simulation except for a few 470 
samples.  The observed pattern—better correspondence for stability estimates between the two 471 
strategies for free linking than for free sorting—follows predictably from a limitation of the 472 
pairwise simulation (see section 2.3.1): because the chance of each edge being selected for a 473 
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simulation is independent of all other edges, the actual, expected correlations between edge co-474 
occurrence is not captured.  This makes simulations generated by this approach much less 475 
representative for free sorting, because in free sorting all edges are part of cliques (fully 476 
connected subgraphs, Gross et al., 2013), implying a strong correlation between edges in 477 
observed data.  However, as we see here, pairwise simulation performs quite well for free 478 
linking, precisely because transitivity is not a requirement (arguably, an artifact) of the data-479 
collection methodology (see section 1.2).  Therefore, we can conclude that our stability 480 
estimates for stability for our incomplete linking results, which can only be simulated pairwise, 481 
may have an upward bias in terms of absolute values (as observed in the free-sorting results), 482 
but adequately allow for within-study comparisons of stability among samples and groups.   483 

With this in mind it is worth discussing the observable decrease in stability estimates for 484 
both complete methods for some samples—the dark chocolate samples with low cocoa-485 
content—when simulations are generated through the pairwise method.  These samples are 486 
dark chocolate but appear to share sensory properties with the “dark milk” Endangered Species 487 
Milk Chocolate, not the other dark chocolates.  We can then compare only the pairwise 488 
simulation stabilities for the free linking with incomplete blocks to the free linking and free sorting 489 
with complete blocks: for the other dark-chocolate samples (grouped together in all three 490 
studies, with dark blue points in Figure 5) the stabilities are very close, with the incomplete-block 491 
design performing on the whole either better or only slightly worse than the complete-block 492 
designs; for the milk-chocolate samples, the incomplete-block design performs notably better.  493 
By examining the groups in Figure 5, it is apparent that this performance improvement comes 494 
from the hypothesized prototypical outlier (Endangered Species Milk Chocolate) leaving the 495 
milk-chocolate cluster and grouping with the cluster of dark chocolates that had similar cocoa 496 
contents. 497 
 498 
3.2. Study 2 results 499 

In Study 2, we examined a large sample set—62 terms from the Cocoa Wheel of 500 
Excellence (see Table 2). There were three main goals of this study: to evaluate the stability of 501 
results with incomplete-block designs in a real-world sample, to compare the stability of results 502 
from free-linking and free-sorting tasks with incomplete blocks, and to evaluate the 503 
discriminative quality of the results from these tasks by comparing between methods and to the 504 
original configuration. 505 

Jaccard stability was calculated for each treatment, using pairwise simulation (see 506 
section 2.3.1) for the free sorting and linking with incomplete blocks and both pairwise 507 
simulation and classic bootstrapping for free sorting with complete blocks.  The results for 508 
stability on an individual sample/term basis and on a group basis are given in Figure 6.  From 509 
these results, it is clear that for almost all samples incomplete free-linking is more stable than 510 
incomplete free-sorting, and is reasonably stable even compared to complete free sorting 511 
(Figure 6).  This stability is encouraging because the data loss from the incomplete linking and 512 
incomplete sorting (see section 2.2.3) is expected to reduce overall stability: each pair of 513 
samples is seen together much less frequently than planned (with a minimum of 3 pairwise 514 
cooccurrences for a small number of pairs, see figure 2). 515 

Graph statistics for the various methods applied to the 62 samples in this study show the 516 
same pattern observed in Study 1: incomplete linking produces results that are overall of lower 517 
degree and with more components per individual subjects’ graph (Table 3).  It is interesting to 518 
note that the median number of components produced by incomplete sorting is in fact even 519 
lower than for complete sorting, and the median observed sample degree is in fact higher (Table 520 
3).  This indicates that incomplete sorting does not improve on complete sorting in terms of 521 
producing more nuanced or fine-grained results, while incomplete linking appears to retain the 522 
advantage of complete linking observed in Lahne et al. (Lahne et al., 2022).  Overall, this also 523 



supports the interpretation that free-linking, even with incomplete blocks, produces results that 524 
may better discriminate among samples and groups of samples. 525 

The consensus solution for each of the three treatments is visualized as an additive tree 526 
with groups identified by the recursive partitioning algorithm in Figure 7 (Koenig et al., 2021).  527 
Groups are colored so that “similar” groups (determined again by an application of the Jaccard 528 
coefficient) are assigned similar colors across the studies.  Based on the Total Cophenetic 529 
Index the complete sorting is the most “star-shaped” (Figure 7a), and thus discriminating among 530 
groups of samples, whereas the incomplete sorting is the most “caterpillar-shaped” (Figure 7c), 531 
and thus less discriminating, with the incomplete linking in-between (Figure 7b).  However, the 532 
range of observed TCIs is quite small and all are a small fraction of the maximum TCI: )$%" * =533 
37,820.  534 

Finally, the quality of the groups produced by the different methods under recursive 535 
partitioning can be examined in terms of subjective quality (how sensible they appear) and 536 
matching to the original taxonomy provided by the Cocoa of Excellence Wheel (Cocoa of 537 
Excellence Technical Committee, 2021). Recursive partitioning of the incomplete linking results 538 
identifies more groups (23) than does complete or incomplete sorting (17 and 19, respectively).  539 
In Figure 7 and Table 2 these groups can be more closely examined, and it is apparent that 540 
qualitatively, incomplete linking produces generally sensible, useful partitions.  For example, 541 
incomplete linking results propose to partition the “fresh fruit” group in a manner that appears 542 
sensible (into stone-fruit and yellow-fruit/tropical groups), whereas both sorting methods do not 543 
partition the group.  Alignment of these groups with the original wheel group is achieved through 544 
another application of Jaccard similarity: for each group of terms in the original wheel, Jaccard 545 
similarity is calculated against all proposed groups stemming from each experimental method, 546 
and the group(s) with the highest similarity score are presented in Table 2.  Two encouraging 547 
results are found: first, incomplete linking results produces fewer non-matching groups 548 
(represented with NA in Table 2).  As noted above, incomplete linking also tends to propose 549 
sensible partitions of the groups from the original wheel.  While both of these are qualitative 550 
observations, it indicates that incomplete free-linking produces results of a quality that are 551 
comparable to complete free-sorting, even in the presence of serious data-loss. 552 

 553 
4. Discussion 554 

These studies’ results provide insight into the application of free-sorting and free-linking 555 
approaches with partially balanced incomplete-block designs.  In order to keep the discussion 556 
focused, we focus on the stability of free sorting and free linking with, respectively, complete- 557 
and incomplete-block designs, on the quality of the groups proposed by each methodology, and 558 
on the implications for method selection for sensory scientists interested in using incomplete-559 
block designs with holistic methods. 560 

 561 
4.1. Stability 562 

Results from both Study 1 and Study 2 provide insight into the stability of free linking 563 
with incomplete blocks using the Jaccard index method suggested by Yu et al. (2019).  In a 564 
previous study comparing free sorting, we had observed that free linking was stable at relatively 565 
low subject counts, but that in general its stability was always slightly lower than that of free 566 
sorting (Lahne et al., 2022, Figure 6) at the same subject count.  Therefore, it is interesting to 567 
observe in the results from Study 1 in the current paper (Figure 5) that the Jaccard stability 568 
assessed by pairwise simulation for free linking with incomplete blocks was at least as high as 569 
that of free linking with complete blocks simulated in the same way.  It must, however be noted 570 
that the method used to assess stability of results is different between this study and Lahne et 571 
al. (2022).  In the previous work, the RVb coefficient was used to assess overall configuration 572 
stability at different subject counts (Blancher et al., 2012); in the current study the Jaccard index 573 



was used instead, as the question of interest was not just overall configural stability, but 574 
grouping/partitioning stability (as defined by Koenig et al., 2021), and because the RVb cannot 575 
be applied directly to these partially balanced designs because of the way in which it is 576 
generated.  However, if we compare stabilities estimated for the free linking and sorting results 577 
with complete blocks using both bootstrapping and pairwise simulation, the replication of the 578 
pattern observed in Lahne et al. (2022) bolsters our confidence that the stability results 579 
observed with only pairwise simulation for incomplete linking is reasonable.  We speculate that 580 
this difference in stabilities can be explained partially by the method of generating the estimates, 581 
as discussed in section 3.2, and partially by the decreased presentation of a “prototypical” 582 
sample, the Endangered Species Milk Chocolate, as discussed in section 3.1.  In regards to the 583 
former, it is likely that the pairwise simulation approach, because it does not constrain 584 
simulations to have correlated edges in the same way as bootstrapping, produces simulated 585 
results that are on the whole “more similar” to each other, and therefore more similar.  In 586 
regards to the latter, it is possible that an unanticipated side effect of the incomplete-block 587 
design is the generation of a consensus that “averages out” the sample similarities in the 588 
presence and absence of such unusual, prototypical samples.  589 

Study 1 does provide evidence that  our novel method of graph-based, pairwise 590 
simulation is effective and produces results that, for free-linking, are comparable to more 591 
classic, block-wise bootstrapping (Abdi et al., 2009, 2012).  In Figure 5, free linking with 592 
complete blocks show parallel patterns of sample- and group-wise Jaccard stability when 593 
resampled using bootstrapping or our novel pairwise simulation.  In addition, for both free 594 
sorting and free linking with complete blocks, the direction of difference between stability results 595 
is not overall consistent, so it is not clear that there is a consistent bias.  This gives us 596 
confidence that, for free linking with incomplete blocks, which cannot be resampled using a 597 
classical bootstrap, the estimate of stability using the novel pairwise simulation is a valid 598 
estimate, especially for intra-study results. 599 

Examining the stability results from Study 2, however, provides a reason for some 600 
caution: the only comparison between the two simulation approaches possible in this set of 601 
results is in the free sorting with complete blocks, and in this case there is a dramatic difference 602 
in stability estimates between the classical bootstrapping and the pairwise simulation.  Given the 603 
now well-established appropriateness of bootstrapping for complete-block designs (Abdi et al., 604 
2009; Berry et al., 2021; Efron & Tibshirani, 1994), we must conclude that the pairwise 605 
simulation approach is producing estimates of stability that are very negatively biased.  We 606 
believe that this can be explained by revisiting the generative procedure described in section 607 
2.3.1: for free linking, the weighted graph representation is the natural data structure (see 608 
Figures 1 and 2), but for free sorting the weighted graph doesn’t capture the disjoint and 609 
transitive structure of the individual subjects’ results.  Therefore, when simulated graphs are 610 
generated from the weighted-graph representation of the sorting results, the absence of 611 
correlations between edge presences described in sections 2.3.1 and 3.1 is likely to create 612 
more unrealistic results: in the current simulation, out of 𝑖 = 1000 complete sorting results 613 
simulated, 52% of the individual subjects’ simulated results have only a single component in the 614 
similarity graphs.  A result with a single component not only indicates that a subject did not find 615 
any samples different from each other in free sorting; it is explicitly forbidden in the instructions 616 
given to subjects in free sorting (Valentin et al., 2018)!  This degenerate case is, 617 
counterintuitively, a result of the transitivity assumption from sorting: as sorting results when 618 
represented as a graph consist of fully connected cliques, the pairwise simulation will always 619 
result in an erroneously high number of links that indicate similarity (see Figure 3), in contrast to 620 
the more realistic simulations for incomplete linking results, where far fewer links are observed 621 
(see Table 3).  622 

Therefore, for Study 2, we should probably not consider pairwise simulation to be an 623 
acceptable estimate of stability for free sorting (either complete or incomplete); unfortunately, 624 



therefore, while we are confident in this pairwise-simulation approach for incomplete linking (cf. 625 
Figure 6) and the bootstrap-resampling approach for complete sorting, we do not feel confident 626 
that the stability estimate available for incomplete sorting based on pairwise simulation is 627 
reflective of the method’s true stability.  However, we can investigate the quality of the proposed 628 
partitions derived from free sorting and free linking with incomplete blocks. 629 
 630 
4.2. Quality 631 

For applications of free sorting, a key outcome is the grouping structure derived from the 632 
consensus (dis)similarity judgments of the subjects: which samples are most similar to each 633 
other, and what groups of samples can be hypothesized from this pairwise similarity (Valentin et 634 
al., 2012, 2018)?  We have argued here and elsewhere (Lahne et al., 2022) that more effective 635 
holistic methods identify more groups, rather than fewer, when all else remains the same.  In the 636 
current studies, we see that free linking with incomplete blocks identified at least as many 637 
groups as free sorting with complete groups (Study 1, Figure 4), or indeed identified more 638 
(Study 2, Figure 6 and Table 2).  This empirical measure of quality corresponds with the 639 
observed graph statistics reported in Table 2: in both studies, free linking with incomplete blocks 640 
produced similarity graphs that were less tightly connected and less transitive, which allows 641 
group-identifying (e.g., partitioning or clustering) algorithms like recursive partitioning to find 642 
better refined structures (Koenig et al., 2021).   643 

Of course, if groups are meaninglessly differentiated by a methodology, then number of 644 
groups is a poor metric for quality.  In this case we can examine the actual group memberships 645 
qualitatively for each study, as recursive partitioning is a form of unsupervised learning (Hastie 646 
et al., 2009).  Proposed groups across the three methods in Study 1 are substantially similar, 647 
with the exception of the placement of the Milk Endangered Species chocolate, as discussed in 648 
section 3.1.  In Study 2 the large number of samples provides the opportunity for many different 649 
group arrangements.  We would argue that none of the methods produced an obviously 650 
unacceptable partition of the sample space (i.e., no proposed groups for any method were on-651 
their-face ridiculous: Table 2).  In this situation, then, the increased nuance and detail provided 652 
by the incomplete linking method, which identified 23 groups, is more useful: an end user of this 653 
lexicon would probably benefit from the separation of the fruity terms into two sub-groups, for 654 
example, or the effective partitioning of the general, single “vegetal” group into three subgroups. 655 
 656 
4.3. Free linking vs free sorting  657 

Complete free-sorting performs quite well in both Study 1 and Study 2, and as previously 658 
demonstrated complete free-linking performs well in Study 1 (Lahne et al., 2022); however, the 659 
real question posed in the current work is whether free sorting and free linking can be used 660 
when the number of samples for evaluation necessitates the use of a partially balanced 661 
incomplete-block design.  When we consider both the stability and the quality of the results, it is 662 
apparent that free sorting’s ability to produce stable partitions that explain the underlying 663 
similarity structure in a sample set may be worse than free linking when samples are presented 664 
in incomplete blocks.  The results that we observe are consistent with our main hypothesis that 665 
the underlying cognitive task of free linking—pairwise comparison—and the data structure that 666 
best represents it—a similarity graph—are not challenged by incomplete-block designs in the 667 
same way as the cognitive task and data structure of free sorting. 668 
 669 
4.4. Limitations and future research 670 

A key limitation of the current research is the use of sample sets that could be easily 671 
evaluated in complete blocks when tasted (in Study 1) or without tasting (in Study 2).  This 672 
constraint was necessary for the study design, but it does limit our ability to generalize these 673 
results.  Specifically, will the observed performance benefits of free linking over free sorting in 674 
incomplete blocks persist either when subjects have to taste a larger number of samples, or 675 



when many more subjects must be included to fill the blocks of a larger incomplete-block design 676 
with fewer samples per block?  Only by conducting these studies can we answer these 677 
questions. 678 

We propose, therefore, that future research should focus on applying incomplete-block 679 
designs with free linking to investigate a realistically large set of samples to be evaluated by 680 
taste or smell (past results indicate quality of free sorting results decays around 20 samples: 681 
Chollet et al., 2011; Kessinger et al., 2020).  In order to assess replicability, one or more blind 682 
replicates can be included in the sample set without increasing the number of blocks required 683 
unduly.  Such studies will validate the stability and the empirical applicability of this approach. 684 

A second key limitation to our conclusions’ generality was the unplanned data loss due 685 
to unexpected server reboots in Study 2.  This forced us to compare very asymmetric situations 686 
between the free-linking and free-sorting tasks in terms of pairwise cooccurrence (a difference 687 
of an order of magnitude, in some cases), when the original design had controlled for this 688 
difference more effectively.  However, in this case we feel that the reduced data for the 689 
incomplete-block designs represent a ”worst case” scenario; because we have the results from 690 
Study 1 and the methodological “gold standard” of complete free-sorting in Study 2, we know 691 
that the results with the data loss in the incomplete-block studies have reduced quality; it is very 692 
improbable that the results will appear to be erroneously more stable or have higher quality. 693 
Therefore, we are more confident in our results, as the unbalanced design should only bias our 694 
estimates of stability in the incomplete-block designs downward.  Given the relative success of 695 
the incomplete-linking in this unfavorable design, we hypothesize that in a better-balanced 696 
experiment, free linking with incomplete blocks will perform extremely well (as was indeed the 697 
case in Study 1). 698 

A third limitation, but also an opportunity for future research and improvement, is the 699 
specific mechanism we have proposed for pairwise simulation of similarity results.  We have 700 
discussed extensively throughout that, while this approach resolves the problem of implicit 701 
missing data in partially balanced incomplete-block designs, it does not fully capture the 702 
generating process of the original data, and so it will create results that only resemble the 703 
original data in the long run and aggregate (the consensus results), not in the individual subject 704 
results.  This is particularly apparent in the dramatic differences between pairwise simulation 705 
and bootstrapping when applied to free-sorting results, as compared to the more modest 706 
differences for free-linking results.  We propose that further methodological development could 707 
go into this pairwise-simulation proposal; this approach is to our knowledge novel, and so its 708 
properties should be further evaluated to examine the precise nature of how it may bias 709 
(different) stability estimates and to support extension to other data types.  One key area of 710 
interest is developing an approach that is more “fair” to free sorting—that is, a method that does 711 
not disrupt transitivity, while still allowing for resampling or at least simulation of incomplete-712 
block designs.  713 

Finally, a key area for future research is an investigation into the effects of the number of 714 
samples and the number of subjects on the stability of similarity judgments derived from free 715 
linking (or indeed free sorting) with incomplete-block designs.  From the current results, we can 716 
speculate that with a small number of samples and a relatively large number of subjects, as in 717 
Study 1, the results of incomplete-block designs will remain relatively stable; and, from Study 2, 718 
with the effects of the unplanned data loss, we can also speculate that with a large number of 719 
samples and a relatively small number of subjects, stability is clearly negatively affected.   720 
 721 
5. Conclusions 722 

 723 
Rapid, holistic methods for ascertaining the similarities, differences, and groups among a 724 

set of samples are increasingly widely used and popular in sensory evaluation.  These 725 
methods—whether free sorting, free linking, projective mapping, or other variations—are all 726 



limited by the number of samples a single subject can assess in one sitting.  The current work 727 
presents the results of two studies that evaluate the application of the free-sorting and free-728 
linking tasks to incomplete-block designs for sample presentation.  The use of incomplete 729 
blocks allows sensory scientists to avoid the current limitation on the size of sample sets, and 730 
would increase the usability and impact of these methods.  We hypothesized that it would be 731 
possible to use incomplete-block designs with these methods, but that free linking, because of 732 
its cognitive framework and data structure, would prove to be a better fit for the use of these 733 
designs. 734 

Indeed, we found that, in two studies, free linking with an incomplete-block design was 735 
able to provide results that were consistent with results from a complete-block design with free 736 
sorting or free linking.  Results from this incomplete free-linking also maintained the advantages 737 
of the free-linking task, producing results that were more nuanced than those from free sorting.  738 
We also found that free sorting with incomplete-block designs, as hypothesized, was less stable 739 
and less discriminating in identifying groups of samples than free linking.  Therefore, we are 740 
able to conclude that incomplete-block designs are feasible with these holistic methods, and 741 
that of the two methods compared, free linking was much better suited for use with incomplete-742 
block designs.  These results should enable sensory scientists to employ rapid, holistic methods 743 
with larger sample sets and more fatiguing samples. 744 
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Tables 905 
 906 
Table 1. Sample information for Study 1 samples (from Lahne et al., 2022) 
Manufacturer Chocolate type Cocoa content 

Cadbury Dark 35%? 
Hershey's  Dark 45%? 
Green & Black's Dark 70% 
Endangered Species Dark 72% 
Green & Black's Dark 85% 
Pascha Dark 85% 
Cadbury Milk 26%? 
Hershey's  Milk 30%? 
Green & Black's Milk 34% 
Endangered Species Milk 48% 

?information gathered indirectly from manufacturer’s website rather than packaging. 
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Table 2. Sample information for Study 2: Cocoa of Excellence groups and terms.  Also shown are 
results from Study 2 with samples matched against best-fitting groups from sorting and linking 
studies (as determined by the Jaccard index, Yu et al., 2019). 

Cocoa of Excellence Descriptors 
(Cocoa of Excellence Technical 

Committee, 2021) 
Lexicon groups determined from sorting and linking studies 

Group Name Group Terms Complete Sorting 
Groups 

Incomplete Linking 
Groups 

Incomplete Sorting 
Groups 

acidity 
total acidity, fruity, 
acetic, lactic, mineral, 
rancid butter 

acetic, lactic, total acidity acetic, over-fermented acetic, lactic, total acidity 

animal meaty, dirty animal / 
farmyard, leather leather, mineral, tobacco 

leather, mineral leather, moss 

lactic, meaty, mushroom, 
umami meaty, mushroom 

astringency mouth-drying bitterness, mouth-drying dusty, mouth-drying bitterness, dusty, mouth-
drying 

bitter bitterness NA bitterness, total acidity NA 

browned 
fruit 

browned fruit, dried, 
brown, over ripe 

browned fruit, over ripe browned fruit, over ripe, 
rotten fruit browned fruit, panela 

brown, dried 

caramel 
caramelized sugar, 
caramel, brown 
sugar, panela 

brown sugar, caramel, 
caramelized sugar, 
sweetness brown, brown sugar, 

caramel, caramelized 
sugar 

brown sugar, caramel, 
caramelized sugar, 
sweetness panela, resin 

cocoa cocoa cocoa, spice, spices cocoa, panela cocoa, dried 

earthy earthy, mushroom, 
moss, woodsy 

dark wood, earthy, light 
wood, moss, mushroom, 
woodsy, woody 

NA 
dark wood, earthy, 
mineral, smoky, tobacco, 
woodsy, woody 

floral floral, orange 
blossom, flowers floral, flowers floral, flowers, orange 

blossom 
floral, flowers, orange 
blossom 

fresh fruit 
fresh fruit, berry, 
citrus, cherry / plum, 
peach, apricot, 
banana, tropical 

apricot, banana, berry, 
cherry / plum, citrus, 
fresh fruit, fruity, orange 
blossom, peach, tropical 

apricot, berry, cherry / 
plum apricot, banana, berry, 

cherry / plum, citrus, fresh 
fruit, fruity, peach, tropical banana, fresh fruit, peach 

nutty nutty, nut skin, nut 
flesh nut flesh, nut skin, nutty 

nut flesh, nutty light wood, nut flesh, nut 
skin nut skin, woodsy 

off-flavors 
off-flavors, dirty, 
dusty, musty, mouldy, 
over-fermented, 
rotten fruit, smoky 

dirty, dirty animal / 
farmyard, dusty, manure, 
mouldy, musty 

mouldy, off-flavors, putrid, 
rancid butter 

off-flavors, over-
fermented, putrid, rancid 
butter 

off-flavors, over-
fermented, putrid, rancid 
butter, rotten fruit 

dirty, dirty animal / 
farmyard, manure, musty 

dirty, dirty animal / 
farmyard, mouldy, musty 

putrid putrid, manure NA NA manure, over ripe, rotten 
fruit 

roast degree roast degree roast degree, smoky roast degree, smoky, 
tobacco brown, nutty, roast degree 

spice spice, savory, umami, 
tobacco, spices meaty, savory, umami 

resin, savory, spice savory, umami 

citrus, spices spice, spices 

sweetness sweetness NA fruity, sweetness, tropical NA 



vegetal grassy, green 
vegetal, herbal 

grassy, green vegetal, 
herbal 

dried, herbal grassy, resin 

grassy, moss 
green vegetal, herbal 

earthy, green vegetal 

woody woody, resin, dark 
wood, light wood NA dark wood, light wood, 

woody NA 
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 911 
Table 3. Summary graph statistics for individual subjects’ (dis)similarity graphs from Study 1 
and Study 2. 
Methodology # Components* Degree* 
Study 1 

Complete linking 4 (1, 5) 0.11 (0, 0.44) 
Complete sorting 4 (2, 7) 0.22 (0, 0.56) 
Incomplete linking 3 (1, 3) 0.2 (0, 0.60) 

Study 2  
Complete sorting 7 (3, 21) 0.16 (0.02, 0.51) 
Incomplete linking 8 (1, 14) 0.07 (0, 0.27) 
Incomplete sorting 5 (2, 12) 0.2 (0, 0.53) 

*All graph statistics are reported as Median (95% quantile). 
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Figures 914 
 915 
Figure 1.  Schematic representation of sample presentation and design for rapid, holistic 916 
methods, with (A) two possible incomplete blocks presented, showing a “prototypical” sample in 917 
red, and with non-presented samples in any block shown as “greyed out”.  In (B) two possible 918 
results of free sorting are shown, and the combined results are shown to no longer be a partition 919 
of the full sample; in contrast, in (C) two possible results of free linking are shown, and the 920 
combined results remain a (weighted) similarity graph.   921 
 922 
Figure 2. Pairwise co-occurrence counts for samples for the incomplete-block designs in Study 923 
2 after data loss. 924 
 925 
Figure 3.  A schematic representation of the novel, graph-based simulation strategy described 926 
in more detail in section 2.3.1.  Briefly, in (A) all observed results of Study 1 are represented as 927 
a weighted graph: nodes represent samples (labeled with blinding codes), each edge 928 
represents the co-occurrence of two samples in the entire study, and the thickness (weight) of 929 
the edge represents the proportion of times in which a pair of samples, when presented together 930 
in a block, were judged to be similar.  In (B), the same row of the incomplete-block design is 931 
simulated; for each simulation, all co-occurrences are assigned a probability of similarity based 932 
on the observed proportion in the actual study.  Finally, in (C) all nodes not in the block and all 933 
edges which were not selected as “similar” in the simulation are dropped, giving two simulated, 934 
unweighted similarity graphs for the same row of the incomplete-block design.  The entire 935 
process can be repeated a large number of times (in this case 𝑖 = 1000) to produce a simulated 936 
dataset suitable for stability and other calculations. 937 
 938 
Figure 4.  Additive tree representations of similarities among 10 chocolate samples, as 939 
determined by (A) complete sorting, (B) complete linking, and (C) incomplete linking.  Colors 940 
represent groups determined by recursive partitioning of additive trees (Koenig et al., 2021). 941 
 942 
Figure 5. Jaccard stabilities for samples from Study 1, by complete linking, complete sorting, 943 
and incomplete linking (indicated by point shapes).  Solid or dashed lines indicate “classical” 944 
bootstrapping or the novel, pairwise simulation described in Section 2.3.1, respectively.  Points 945 
are colored according to the same group memberships shown in Figure 4.  Group stability would 946 
be calculated by averaging the individual members, but is easily visible with only 10 samples 947 
and so is not drawn separately. 948 
 949 
Figure 6. Jaccard stabilities for samples (top) and groups (bottom) from Study 2, by complete 950 
sorting, incomplete linking, and incomplete sorting.  Dark and light green lines and points 951 
represent complete and incomplete sorting (respectively), and tan line and points represent 952 
incomplete linking.  Solid lines represent “classical” bootstrapping, and dashed lines represent 953 
the novel, pairwise simulation described in Section 2.3.1.  The faint, horizontal lines represent 954 
the average stability for the entire study in colors and line types as described above. 955 
 956 
Figure 7.  Additive tree representations of similarities among 62 terms from the Cocoa Wheel of 957 
Excellence (Cocoa of Excellence Technical Committee, 2021), as determined by (A) complete 958 
sorting, (B) incomplete linking, and (C) incomplete sorting.  Colors represent groups determined 959 
by recursive partitioning of additive trees (Koenig et al., 2021). 960 
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