Matemática Discreta (ITST, ITSE, ITT) Refuerzo curso 2006-2007

Práctica 4.2 (Aplicaciones lineales)

- 1. Sea $f: V \to V'$ una aplicación lineal. Demostrar que si S es un subespacio vectorial de V, entonces f(S) es subespacio vectorial de V'.
- 2. Estudiar si las siguientes aplicaciones son lineales:
 - (a) $f: \mathbb{R} \to \mathbb{R}$ dada por $f(x) = x^2$.
 - (b) $f: \mathbb{R}^2 \to \mathbb{R}$ dada por f(x, y) = x 2y.
 - (c) $f: \mathbb{R}^2 \to \mathbb{R}^2$ dada por f(x, y) = (x + y, xy).
 - (d) $f: \mathbb{R}^2 \to \mathbb{R}^3$ dada por f(x, y) = (3x + y, x y, y 1).
 - (e) det : $\mathcal{M}_{n \times n}(\mathbb{R}) \to \mathbb{R}$ para n > 1.
- 3. Para la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^2$ dada por f(x, y, z) = (x+y, x-z):
 - (a) Determinar la matriz de f respecto de las bases $B = \{(3,0,1), (1,2,0), (2,3,1)\}$ y $B' = \{(1,0), (1,1)\}.$
 - (b) Respecto de B y B', calcular $\operatorname{Ker}(f)$ obteniendo una base.
 - (c) Dar también la expresión de Ker(f) en ecuaciones implícitas (sistema homogéneo que lo genera).
 - (d) Respecto de B y B', calcular Im(f) obteniendo una base.
- 4. Para $f: \mathbb{R}^2 \to \mathbb{R}^3$ lineal dada por f(x,y) = (2x y, x + y, 2x + 2y):
 - (a) Determinar la matriz de f respecto de las bases $B = \{(2,1), (-1,2)\}$ y $B' = \{(1,0,1), (-1,1,0), (0,0,1)\}.$
 - (b) Respecto de B y B', calcular Ker(f) obteniendo una base.
 - (c) Respecto de B y B', calcular Im(f) obteniendo una base.
 - (d) Dar también la expresión de Im(f) en ecuaciones implícitas (sistema homogéneo que lo genera).
- 5. Para $f: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}^2$ dada por

$$f(\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)) = (a+d,b-c)$$

(a) Demostrar que f es una aplicación lineal.

- (b) Determinar la matriz de f respecto de las bases canónicas $B=\left\{\begin{pmatrix}1&0\\0&0\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix},\begin{pmatrix}0&0\\0&1\end{pmatrix}\right\}$ y $B'=\{(1,0),(0,1)\}.$
- (c) Respecto de B y B', calcular Ker(f) obteniendo una base.
- (d) Respecto de B y B', calcular Im(f) obteniendo una base.
- 6. Sea $f:V_3\to V_4'$ una aplicación lineal entre los \mathbb{R} -espacios vectoriales V_3 y V_4' , de dimensiones 3 y 4 respectivamente, dada por la matriz

$$A = \left(\begin{array}{rrr} 1 & 1 & 0 \\ -1 & 0 & 2 \\ 3 & a & 1 \\ -a & -2 & 0 \end{array}\right).$$

- (a) Determinar los valores de a para los que f es inyectiva. Para el resto, calcular Ker(f) obteniendo una base.
- (b) Determinar los valores de a para los que f es sobreyectiva. Para el resto, calcular Im(f) obteniendo una base.
- 7. Para la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ dada por f(x, y, z) = (x + 2ay z, -x + ay 3z, ax 2y + 2z):
 - (a) Determinar los valores de a para los que f es inyectiva. Para el resto, calcular Ker(f) obteniendo una base.
 - (b) Determinar los valores de a para los que f es sobreyectiva. Para el resto, calcular Im(f) obteniendo una base.
- 8. Para el automorfismo $f: \mathbb{R}^2 \to \mathbb{R}^2$ dado por f(x,y) = (x+2y,2x-y):
 - (a) Determinar la matriz de f respecto de la base $B = \{(-1, 2), (3, -3)\}.$
 - (b) Determinar la matriz del automorfismo inverso f^{-1} (respecto de esa misma base).
- 9. Determinar la matriz en la base $B_2 = \{(2,3), (-1,2)\}$ del endomorfismo $f: \mathbb{R}^2 \to \mathbb{R}^2$ cuya matriz en la base $B_1 = \{(-1,-2), (3,1)\}$ es $\begin{pmatrix} 1 & -2 \\ -3 & 2 \end{pmatrix}$. (Pista: Usar el ejercicio 12.a) de la Práctica 4.1)