David Orden Dep. Matemáticas UAH

Curso cero "Matemáticas en informática": Matrices y determinantes

David Orden Dep. Matemáticas UAH

Septiembre 2005

David Orden Dep. Matemáticas UAH

Matrices

efinicione

Inversa

Rango

B

Determinante

 2×2

Propiedades

Inversa

Rango

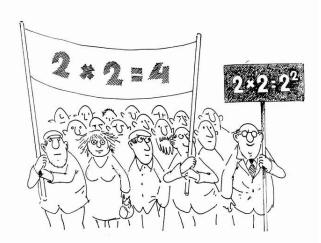
Ejercici

Autoevaluació

Matrices

Bibliografía y web

Matrices



Curso cero: Matrices y

David Orden Dep. Matemáticas UAH

. . . .

Definiciones

Definicion

I-----

Rango

Ejerci

-

Determinante

2 × 2 y 3 ×

 $n \times n$

Propiedade

Invers

Fiercici

Autoevaluació

Matrices

Bibliografía y webs

• Se llama matriz de orden $m \times n$ a cualquier conjunto de elementos dispuestos en m filas y n columnas:

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \in \mathcal{M}_{m \times n}$$

David Orden Dep. Matemáticas UAH

Makulas

Definiciones

Definicio

Invorce

Rango

Ejercio

Determinante

2 × 2

Propiedade

I-----

Rango

Ejercicio

Autoevaluación

Matrices

Bibliografía y webs recomendadas • Se llama matriz de orden $m \times n$ a cualquier conjunto de elementos dispuestos en m filas y n columnas:

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \in \mathcal{M}_{m \times n}$$

Dos matrices son iguales si lo son todos sus elementos.

David Orden Dep. Matemáticas UAH

Makelea

Definiciones

Operacio

Inversa

Fiercic

Ljercic

Determinante

 $2 \times 2 y$

 $n \times n$

Propiedade

Rango

Fiercicio

Autoevaluación

Matrices

Bibliografía y webs

 Se llama matriz de orden m × n a cualquier conjunto de elementos dispuestos en m filas y n columnas:

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \in \mathcal{M}_{m \times n}$$

- Dos matrices son iguales si lo son todos sus elementos.
- Una matriz es cuadrada si m = n. En ese caso, a_{11}, \ldots, a_{nn} forman la diagonal principal.

David Orden Dep. Matemáticas UAH

Matrica

Definiciones

Operacio

Inversa

Kango

_,-.-.

Determinante

 2×2

II X II

I-----

Rango

Ejercicio

Autoevaluació

Matrices Determinant

Bibliografía y web recomendadas

 Se llama matriz de orden m × n a cualquier conjunto de elementos dispuestos en m filas y n columnas:

$$A = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \cdots & a_{mn} \end{pmatrix} \in \mathcal{M}_{m \times n}$$

- Dos matrices son iguales si lo son todos sus elementos.
- Una matriz es cuadrada si m = n. En ese caso, a_{11}, \ldots, a_{nn} forman la diagonal principal.
- Se llama matriz triangular superior/inferior la que tiene nulos todos los elementos por debajo/encima de la diagonal.

David Orden Dep. Matemáticas UAH

Managia

- - - -

Definiciones

Inversa

Rango

Eiorcio

Determinant

n × 1

Propiedado

rropiedadi

Inversa

Rango

Ejercicio

Autoevaluaciór

Matrices

Bibliografía y webs recomendadas Una matriz diagonal tiene nulos todos los elementos fuera de la diagonal.

David Orden Dep. Matemáticas UAH

Definiciones

- Una matriz diagonal tiene nulos todos los elementos fuera de la diagonal.
- Dada una matriz $A \in \mathcal{M}_{m \times n}$, su opuesta -A tiene elementos $(-a_{ii})$.

David Orden Dep. Matemáticas UAH

Matrices

Definiciones

Operacione

Panga

Fiercic

_ .

Determinante

2 × 2 y 3 ×

II X II

Propiedade

Inversa

Kango

Ejercicios

Autoevaluación

Matrices

Bibliografía y webs recomendadas

- Una matriz diagonal tiene nulos todos los elementos fuera de la diagonal.
- Dada una matriz $A \in \mathcal{M}_{m \times n}$, su opuesta -A tiene elementos $(-a_{ij})$.
- Para una matriz A, su traspuesta $A^t = (a_{j,i}) = \in \mathcal{M}_{n \times m}$ se obtiene intercambiando en A las filas por las columnas.

David Orden Dep. Matemáticas UAH

Matrice

Definiciones

Operacione

Rango

Ejercic

Б. . .

Determinant

 $n \times n$

Propiedade

I-----

Rango

Ejercicio

Autoevaluació

Matrices Determinant

Bibliografía y webs recomendadas

- Una matriz diagonal tiene nulos todos los elementos fuera de la diagonal.
- Dada una matriz $A \in \mathcal{M}_{m \times n}$, su opuesta -A tiene elementos $(-a_{ij})$.
- Para una matriz A, su traspuesta $A^t = (a_{j,i}) = \in \mathcal{M}_{n \times m}$ se obtiene intercambiando en A las filas por las columnas.
- Si $A = A^t$, la matriz se dice simétrica. Si $A = -A^t$, se llama antisimétrica.

David Orden Dep. Matemáticas UAH

Operaciones

Rango

Propiedades

Rango

Matrices

• La suma de matrices A + B se hace elemento a elemento:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{pmatrix} =$$

David Orden Dep. Matemáticas UAH

Maritina

D.C.

Operaciones

Operaci

Rango

Eiorcio

 $n \times r$

Propiedades

Invers

Rango

Ejercicio

Autoevaluació

Matrices

Ribliografía v w

• La suma de matrices A + B se hace elemento a elemento:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 8 \\ 7 & 14 \\ -3 & 4 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Matrica

Definiciona

Operaciones

Inversa

Rango

Eiercio

Determinante

2
$$\times$$
 2 y 3 \times

 $n \times n$

Propiedades

Inversa

Rango

Ejercicio

Autoevaluació

Matrices

Determinantes

Bibliografía y webs recomendadas La suma de matrices A + B se hace elemento a elemento:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 8 \\ 7 & 14 \\ -3 & 4 \end{pmatrix}$$

• Cumple las siguientes **propiedades**:

David Orden Dep. Matemáticas UAH

Matrice

Definicione

Operaciones

Inversa

Rango

Ejercic

Determinante

2
$$\times$$
 2 y 3 \times

11 × 11

Propiedade

Inversa

Rango

Ejercicio

Autoevaluació

Matrices

Bibliografía y web recomendadas

 La suma de matrices A + B se hace elemento a elemento:

$$\left(\begin{array}{cc} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{array}\right) + \left(\begin{array}{cc} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{array}\right) = \left(\begin{array}{cc} -1 & 8 \\ 7 & 14 \\ -3 & 4 \end{array}\right)$$

- Cumple las siguientes propiedades:
 - Conmutativa; A + B = B + A.
 - Asociativa; A + (B + C) = (A + B) + C.

David Orden Dep. Matemáticas UAH

Matrice

Definicion

Operaciones

Pango

Lango

3

Determinante

Propiedade

Propiedade

Inversa

Rango

Ejercicio

Autoevaluación

Matrices

 La suma de matrices A + B se hace elemento a elemento:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 8 \\ 7 & 14 \\ -3 & 4 \end{pmatrix}$$

- Cumple las siguientes propiedades:
 - Conmutativa; A + B = B + A.
 - Asociativa; A + (B + C) = (A + B) + C.
 - Elemento neutro; $\exists 0 = (0)$ tal que A + 0 = 0 + A = A.
 - Elemento opuesto; $\exists -A$ tal que A + (-A) = (-A) + A = 0.

David Orden Dep. Matemáticas UAH

Matrice

Definicion

Operaciones

Орегиен

Rango

Ejercicio

Determinant

Determinant

$$n \times n$$

Propiedade

Propiedade

IIIVEIS

Fiercicio

Autoevaluació

Matrices

Determinante

Bibliografía y web: recomendadas La suma de matrices A + B se hace elemento a elemento:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 8 \\ 7 & 14 \\ -3 & 4 \end{pmatrix}$$

- Cumple las siguientes propiedades:
 - Conmutativa; A + B = B + A.
 - Asociativa; A + (B + C) = (A + B) + C.
 - Elemento neutro; $\exists 0 = (0)$ tal que A + 0 = 0 + A = A.
 - Elemento opuesto; $\exists -A$ tal que A + (-A) = (-A) + A = 0.
- La resta de matrices A B es simplemente A + (-B):

$$\left(\begin{array}{cc} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{array}\right) - \left(\begin{array}{cc} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{array}\right) =$$

David Orden Dep. Matemáticas UAH

Operaciones

Matrices

• La suma de matrices A + B se hace elemento a elemento:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} + \begin{pmatrix} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{pmatrix} = \begin{pmatrix} -1 & 8 \\ 7 & 14 \\ -3 & 4 \end{pmatrix}$$

- Cumple las siguientes propiedades:
 - Conmutativa: A + B = B + A.
 - Asociativa; A + (B + C) = (A + B) + C.
 - Elemento neutro; $\exists 0 = (0)$ tal que A + 0 = 0 + A = A.
 - Elemento opuesto: $\exists -A$ tal que A + (-A) = (-A) + A = 0.
- La resta de matrices A B es simplemente A + (-B):

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} - \begin{pmatrix} -3 & 5 \\ 0 & 5 \\ -7 & 2 \end{pmatrix} = \begin{pmatrix} 5 & -2 \\ 7 & 4 \\ 11 & 0 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Matrices

D (. . .

Definicion

Operaciones

Rango

Eioreie

2 X 4

Propiedades

I-----

Rango

Eiercicio

Autoevaluación

Matrices

Bibliografía y webs recomendadas • El producto de una matriz por un número $k \cdot A$ se hace elemento a elemento:

$$5 \cdot \left(\begin{array}{cc} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{array}\right) =$$

David Orden Dep. Matemáticas UAH

Operaciones

Eiercicios

$$2 \times 2 y$$

Propiedades

Rango

Matrices

• El producto de una matriz por un número $k \cdot A$ se hace elemento a elemento:

$$5 \cdot \begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 10 & 15 \\ 35 & 45 \\ 20 & 10 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Matrices

D C . .

Definicion

Operaciones

Pango

Fiercia

-

Determinante

2 ~ 2 ~ 2 ~ 3

 $n \times n$

Propiedade

Inversa

Rango

Eiercicio

Autoevaluación

Matrices

Bibliografía y webs recomendadas • El producto de una matriz por un número $k \cdot A$ se hace elemento a elemento:

$$5 \cdot \left(\begin{array}{cc} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{array}\right) = \left(\begin{array}{cc} 10 & 15 \\ 35 & 45 \\ 20 & 10 \end{array}\right)$$

Cumple las siguientes propiedades:

David Orden Dep. Matemáticas UAH

Matrices

Definicion

Operaciones

Орстаст

Rango

Eiercio

_ .

Determinante

2 × 2 y 3 ×

Propiedade

Propiedade

Inversa

Rango

Ejercicio:

Autoevaluació

Matrices Determinant

Bibliografía y webs recomendadas • El producto de una matriz por un número $k \cdot A$ se hace elemento a elemento:

$$5 \cdot \begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 10 & 15 \\ 35 & 45 \\ 20 & 10 \end{pmatrix}$$

- Cumple las siguientes propiedades:
 - Distributiva respecto de la suma de matrices; $k \cdot (A + B) = k \cdot A + k \cdot B$.
 - Distributiva respecto de la suma de números;
 (k + h) · A = k · A + h · A.

David Orden Dep. Matemáticas UAH

Operaciones

• El producto de una matriz por un número $k \cdot A$ se hace elemento a elemento:

$$5 \cdot \begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 10 & 15 \\ 35 & 45 \\ 20 & 10 \end{pmatrix}$$

- Cumple las siguientes propiedades:
 - Distributiva respecto de la suma de matrices: $k \cdot (A + B) = k \cdot A + k \cdot B$.
 - Distributiva respecto de la suma de números: $(k+h)\cdot A=k\cdot A+h\cdot A.$
 - Asociativa entre números y matrices; $(k \cdot h) \cdot A = k \cdot (h \cdot A).$
 - Elemento unidad; $\exists 1$ tal que $1 \cdot A = A$.

David Orden Dep. Matemáticas UAH

Matrices

. . . .

Operaciones

Inversa

Rango

Ejercic

Determinante

2 × 2 y 3 ×

 $n \times n$

Propiedade

Inversa

Rango

Ljereielos

Autoevaluacio

Determinant

Bibliografía y web recomendadas

• El producto de una matriz por un número $k \cdot A$ se hace elemento a elemento:

$$5 \cdot \begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} = \begin{pmatrix} 10 & 15 \\ 35 & 45 \\ 20 & 10 \end{pmatrix}$$

- Cumple las siguientes propiedades:
 - Distributiva respecto de la suma de matrices;
 k · (A + B) = k · A + k · B.
 - Distributiva respecto de la suma de números;
 (k + h) · A = k · A + h · A.
 - Asociativa entre números y matrices; $(k \cdot h) \cdot A = k \cdot (h \cdot A)$.
 - Elemento unidad; $\exists 1$ tal que $1 \cdot A = A$.
- ¡OJO! No confundir con el producto de dos matrices, que no es elemento a elemento.

David Orden Dep. Matemáticas UAH

Matrico

Definicione

Operaciones

Inversa

Rango

Fiercia

2 × 2 y 3 >

n × n

Propiedades

Rango

Ejercicio

Autoevaluación

Matrices Determinant

Bibliografía y webs recomendadas Dadas dos matrices A ∈ M_{m×n}, B ∈ M_{n×p}, su producto C = A · B es C ∈ M_{m×p}.

David Orden Dep. Matemáticas UAH

Matrices

......

Definicion

Operaciones

Rango

Fiercici

Determinante

2 × 2 y 3 >

 $n \times n$

Propiedade

Inversa

Rango

Ejercicio

Autoevaluació

Matrices Determinant

Bibliografía y webs recomendadas Dadas dos matrices A ∈ M_{m×n}, B ∈ M_{n×p}, su producto C = A · B es C ∈ M_{m×p}.
 Cada c_{ij} se obtiene sumando los productos, elemento a elemento, de la fila i de A y la columna j de B:

$$\left(\begin{array}{cc} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{array}\right) \cdot \left(\begin{array}{cc} -3 & 5 \\ 0 & 5 \end{array}\right) =$$

David Orden Dep. Matemáticas UAH

Matrices

_

Operaciones

Inversa

Rango

Ejercio

B

2 × 2 y 3 ×

 $n \times n$

Propiedade

Inversa

Rango

Ejercicio

Autoevaluació

Matrices Determinant

Bibliografía y webs recomendadas Dadas dos matrices A ∈ M_{m×n}, B ∈ M_{n×p}, su producto C = A · B es C ∈ M_{m×p}.
 Cada c_{ij} se obtiene sumando los productos, elemento a elemento, de la fila i de A y la columna i de B:

$$\left(\begin{array}{cc} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{array}\right) \cdot \left(\begin{array}{cc} -3 & 5 \\ 0 & 5 \end{array}\right) = \left(\begin{array}{cc} -6 & 25 \\ -21 & 80 \\ -12 & 30 \end{array}\right)$$

David Orden Dep. Matemáticas UAH

Matrices

Definicion

Operaciones

Inversa

Rango

Ejercicios

D-+-----

n × n

I-----

Rango

Ejercicio

Autoevaluació

Matrices Determinante

Bibliografía y webs recomendadas • Dadas dos matrices $A \in \mathcal{M}_{m \times n}, B \in \mathcal{M}_{n \times p}$, su producto $C = A \cdot B$ es $C \in \mathcal{M}_{m \times p}$.

Cada c_{ij} se obtiene sumando los productos, elemento a elemento, de la fila i de A y la columna j de B:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} -3 & 5 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} -6 & 25 \\ -21 & 80 \\ -12 & 30 \end{pmatrix}$$

Haciendo
$$\left(\begin{array}{cccc} 2 \cdot (-3) + 3 \cdot 0 & 2 \cdot 5 + 3 \cdot 5 \\ 7 \cdot (-3) + 9 \cdot 0 & 7 \cdot 5 + 9 \cdot 5 \\ 4 \cdot (-3) + 2 \cdot 0 & 4 \cdot 5 + 2 \cdot 5 \end{array} \right)$$

David Orden Dep. Matemáticas UAH

Matrices

Definicion

Operaciones

Rango

Eiercici

2 × 2 y 3 >

Propiedade

Inversa

Rango

Ejercicios

Autoevaluació

Matrices Determinantes

Bibliografía y webs recomendadas Dadas dos matrices A ∈ M_{m×n}, B ∈ M_{n×p}, su producto C = A · B es C ∈ M_{m×p}.
 Cada c_{ij} se obtiene sumando los productos, elemento a elemento, de la fila i de A y la columna j de B:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} -3 & 5 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} -6 & 25 \\ -21 & 80 \\ -12 & 30 \end{pmatrix}$$
Haciendo
$$\begin{pmatrix} 2 \cdot (-3) + 3 \cdot 0 & 2 \cdot 5 + 3 \cdot 5 \\ 7 \cdot (-3) + 9 \cdot 0 & 7 \cdot 5 + 9 \cdot 5 \\ 4 \cdot (-3) + 2 \cdot 0 & 4 \cdot 5 + 2 \cdot 5 \end{pmatrix}$$

Número columnas de A = Número filas de B.

David Orden Dep. Matemáticas UAH

Matrices

....

Operaciones

Inversa

Rango

Eiercici

Б. . .

Propiedade

I-----

Rango

Ejercicio

Autoevaluació

Matrices Determinantes

Bibliografía y webs recomendadas • Dadas dos matrices $A \in \mathcal{M}_{m \times n}, B \in \mathcal{M}_{n \times p}$, su producto $C = A \cdot B$ es $C \in \mathcal{M}_{m \times p}$.

Cada c_{ij} se obtiene sumando los productos, elemento a elemento, de la fila i de A y la columna j de B:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} -3 & 5 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} -6 & 25 \\ -21 & 80 \\ -12 & 30 \end{pmatrix}$$

Haciendo
$$\begin{pmatrix} 2 \cdot (-3) + 3 \cdot 0 & 2 \cdot 5 + 3 \cdot 5 \\ 7 \cdot (-3) + 9 \cdot 0 & 7 \cdot 5 + 9 \cdot 5 \\ 4 \cdot (-3) + 2 \cdot 0 & 4 \cdot 5 + 2 \cdot 5 \end{pmatrix}$$

- Número columnas de A = Número filas de B.
- Cumple las siguientes **propiedades**:
 - Asociativa; $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
 - Distributiva; $A \cdot (B + C) = A \cdot B + A \cdot C$.

David Orden Dep. Matemáticas UAH

Matrices

iviatrices

Operaciones

Inversa

Kango

Ljerereros

Determinante

2 × 2 y 3 >

Propiedade

Propiedade

Danna

Fiercicio

Autoevaluació

Matrices

Bibliografía y web recomendadas

 Dadas dos matrices A ∈ M_{m×n}, B ∈ M_{n×p}, su producto C = A · B es C ∈ M_{m×p}.

Cada c_{ij} se obtiene sumando los productos, elemento a elemento, de la fila i de A y la columna j de B:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} -3 & 5 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} -6 & 25 \\ -21 & 80 \\ -12 & 30 \end{pmatrix}$$

Haciendo
$$\begin{pmatrix} 2 \cdot (-3) + 3 \cdot 0 & 2 \cdot 5 + 3 \cdot 5 \\ 7 \cdot (-3) + 9 \cdot 0 & 7 \cdot 5 + 9 \cdot 5 \\ 4 \cdot (-3) + 2 \cdot 0 & 4 \cdot 5 + 2 \cdot 5 \end{pmatrix}$$

- Número columnas de A = Número filas de B.
- Cumple las siguientes **propiedades**:
 - Asociativa; $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
 - Distributiva; $A \cdot (B + C) = A \cdot B + A \cdot C$.
 - Asociativa respecto de producto por un número;
 k · (A · B) = (k · A) · B.

David Orden Dep. Matemáticas UAH

Matrices

Definicione

Operaciones Inversa

Rango

_,-----

n × n

Propiedade

Range

Ejercicio

Autoevaluació

Matrices Determinantes

Bibliografía y webs

Dadas dos matrices A ∈ M_{m×n}, B ∈ M_{n×p}, su producto C = A · B es C ∈ M_{m×p}.
 Cada c_{ij} se obtiene sumando los productos, elemento a elemento, de la fila i de A y la columna j de B:

$$\begin{pmatrix} 2 & 3 \\ 7 & 9 \\ 4 & 2 \end{pmatrix} \cdot \begin{pmatrix} -3 & 5 \\ 0 & 5 \end{pmatrix} = \begin{pmatrix} -6 & 25 \\ -21 & 80 \\ -12 & 30 \end{pmatrix}$$
$$\begin{pmatrix} 2 \cdot (-3) + 3 \cdot 0 & 2 \cdot 5 + 3 \cdot 5 \end{pmatrix}$$

Haciendo
$$\begin{pmatrix} 2 \cdot (-3) + 3 \cdot 0 & 2 \cdot 5 + 3 \cdot 5 \\ 7 \cdot (-3) + 9 \cdot 0 & 7 \cdot 5 + 9 \cdot 5 \\ 4 \cdot (-3) + 2 \cdot 0 & 4 \cdot 5 + 2 \cdot 5 \end{pmatrix}$$

- Número columnas de A =Número filas de B.
- Cumple las siguientes propiedades:
 - Asociativa; $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.
 - Distributiva; $A \cdot (B + C) = A \cdot B + A \cdot C$.
 - Asociativa respecto de producto por un número;
 k · (A · B) = (k · A) · B.
- ¡¡El producto de matrices no es conmutativo!! (Ver el ejemplo anterior, ni siquiera existe $B \cdot A$).

David Orden Dep. Matemáticas UAH

Inversa

Rango

Eiercicios

Rango

Matrices

• Para matrices cuadradas $A \in \mathcal{M}_{n \times n}$, el producto tiene elemento neutro; $\exists I_n$ tal que $I_n \cdot A = A \cdot I_n = A$.

David Orden Dep. Matemáticas UAH

Inversa

- Para matrices cuadradas $A \in \mathcal{M}_{n \times n}$, el producto tiene elemento neutro; $\exists I_n$ tal que $I_n \cdot A = A \cdot I_n = A$.
- Sin embargo, el elemento inverso A^{-1} tal que $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ no siempre existe.

David Orden Dep. Matemáticas UAH

Matrices

iviatrices

Definicio

Inversa

Rango

Eioreie

D.1.......

2 × 2 × 3 ×

 $n \times r$

Propiedade

Inversa

Rango

Ejercicio

Autoevaluació

Matrices

Bibliografía y webs recomendadas

- Para matrices cuadradas $A \in \mathcal{M}_{n \times n}$, el producto tiene elemento neutro; $\exists I_n$ tal que $I_n \cdot A = A \cdot I_n = A$.
- Sin embargo, el elemento inverso A^{-1} tal que $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ no siempre existe.
- Cuando existe, es única y se llama inversa.
 A una matriz que tiene inversa se le llama regular.

David Orden Dep. Matemáticas UAH

Inversa

- Para matrices cuadradas $A \in \mathcal{M}_{n \times n}$, el producto tiene elemento neutro; $\exists I_n$ tal que $I_n \cdot A = A \cdot I_n = A$.
- Sin embargo, el elemento inverso A^{-1} tal que $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ no siempre existe.
- Cuando existe, es única y se llama inversa. A una matriz que tiene inversa se le llama regular.
- Cálculo de la inversa por Gauss-Jordan:

$$\left(\begin{array}{cc} 1 & -2 \\ 3 & -5 \end{array}\right)^{-1} =$$

Se construye $(A|I_n)$

$$\left(\begin{array}{cccc} 1 & -2 & \vdots & 1 & 0 \\ 3 & -5 & \vdots & 0 & 1 \end{array}\right)$$

David Orden Dep. Matemáticas UAH

Inversa

- Para matrices cuadradas $A \in \mathcal{M}_{n \times n}$, el producto tiene elemento neutro; $\exists I_n$ tal que $I_n \cdot A = A \cdot I_n = A$.
- Sin embargo, el elemento inverso A^{-1} tal que $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ no siempre existe.
- Cuando existe, es única y se llama inversa. A una matriz que tiene inversa se le llama regular.
- Cálculo de la inversa por Gauss-Jordan:

$$\left(\begin{array}{cc} 1 & -2 \\ 3 & -5 \end{array}\right)^{-1} =$$

Se construye $(A|I_n)$ y se hacen operaciones elementales por filas

$$\left(\begin{array}{cccc} 1 & -2 & \vdots & 1 & 0 \\ 3 & -5 & \vdots & 0 & 1 \end{array}\right) \xrightarrow{F_2 - 3F_1} \left(\begin{array}{cccc} 1 & -2 & \vdots & 1 & 0 \\ 0 & 1 & \vdots & -3 & 1 \end{array}\right) \xrightarrow{F_1 + 2F_2}$$

David Orden Dep. Matemáticas UAH

Matrica

Matrice

Definicio

Inversa

B

Ejercic

Determinant

2 × 2 y 3 ×

n × n

Propiedad

Invers

Rang

Eierci

Autoevaluació

Matrices Determinant

Bibliografía y webs recomendadas

- Para matrices cuadradas $A \in \mathcal{M}_{n \times n}$, el producto tiene elemento neutro; $\exists I_n$ tal que $I_n \cdot A = A \cdot I_n = A$.
- Sin embargo, el elemento inverso A^{-1} tal que $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ no siempre existe.
- Cuando existe, es única y se llama inversa.
 A una matriz que tiene inversa se le llama regular.
- Cálculo de la inversa por Gauss-Jordan:

$$\left(\begin{array}{cc} 1 & -2 \\ 3 & -5 \end{array}\right)^{-1} =$$

Se construye $(A|I_n)$ y se hacen operaciones elementales por filas hasta llegar a $(I_n|A^{-1})$

$$\begin{pmatrix} 1 & -2 & \vdots & 1 & 0 \\ 3 & -5 & \vdots & 0 & 1 \end{pmatrix} \xrightarrow{F_2 - 3F_1} \begin{pmatrix} 1 & -2 & \vdots & 1 & 0 \\ 0 & 1 & \vdots & -3 & 1 \end{pmatrix} \xrightarrow{F_1 + 2F_2}$$

David Orden Dep. Matemáticas UAH

Matrica

Matrice

Definicio

Inversa

Pango

Fiercic

Determinant

2 × 2 y 3 >

n × n

Propiedad

Invers

Rang

Matrices

Determinante

Bibliografía y webs recomendadas

- Para matrices cuadradas $A \in \mathcal{M}_{n \times n}$, el producto tiene elemento neutro; $\exists I_n$ tal que $I_n \cdot A = A \cdot I_n = A$.
- Sin embargo, el elemento inverso A^{-1} tal que $A \cdot A^{-1} = A^{-1} \cdot A = I_n$ no siempre existe.
- Cuando existe, es única y se llama inversa.
 A una matriz que tiene inversa se le llama regular.
- Cálculo de la inversa por Gauss-Jordan:

$$\left(\begin{array}{cc} 1 & -2 \\ 3 & -5 \end{array}\right)^{-1} = \left(\begin{array}{cc} -5 & 2 \\ -3 & 1 \end{array}\right)$$

Se construye $(A|I_n)$ y se hacen operaciones elementales por filas hasta llegar a $(I_n|A^{-1})$

$$\begin{pmatrix} 1 & -2 & \vdots & 1 & 0 \\ 3 & -5 & \vdots & 0 & 1 \end{pmatrix} \xrightarrow{F_2 - 3F_1} \begin{pmatrix} 1 & -2 & \vdots & 1 & 0 \\ 0 & 1 & \vdots & -3 & 1 \end{pmatrix} \xrightarrow{F_1 + 2F_2}$$

$$\begin{pmatrix} 1 & 0 & \vdots & -5 & 2 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Rango

Propiedades

Rango

Matrices

• El rango de una matriz es el número de filas F_i linealmente independientes

David Orden Dep. Matemáticas UAH

Matricon

Definicione

Inverse

Rango

Ljercicios

 $n \times n$

Propiedades

Rango

Ejercicio

Autoevaluaciói

Matrices Determinante

Bibliografía y webs recomendadas • El rango de una matriz es el número de filas F_i linealmente independientes (e.d., que no se pueden poner como $F_i = \lambda_1 F_1 + \cdots + \lambda_m F_m$).

David Orden Dep. Matemáticas UAH

Matrices

D. C. . . .

Definicion

Inversa

Rango

_,-.---

 $n \times n$

Propied

Inversa

Rango

Ejercicio

Autoevaluació

Matrices Determinante

Bibliografía y webs recomendadas

- El rango de una matriz es el número de filas F_i linealmente independientes (e.d., que no se pueden poner como $F_i = \lambda_1 F_1 + \cdots + \lambda_m F_m$).
- Coincide con el número de columnas C_i lin.ind.

David Orden Dep. Matemáticas UAH

Matrice

Definicion

Inversa

Rango

Propiedade:

Inversa

Rango Ejercicio

Autoevaluació

Matrices Determinante

Bibliografía y webs recomendadas

- El rango de una matriz es el número de filas F_i linealmente independientes (e.d., que no se pueden poner como $F_i = \lambda_1 F_1 + \cdots + \lambda_m F_m$).
- Coincide con el número de columnas C_i lin.ind.
 - Cálculo del rango por Gauss-Jordan:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} =$$

Se hacen operaciones elementales por filas hasta hacer ceros debajo de la diagonal.

$$\left(\begin{array}{rrr}
1 & 2 & 3 \\
1 & -2 & 5 \\
-1 & 10 & -9
\end{array}\right)$$

David Orden Dep. Matemáticas UAH

Rango

- El rango de una matriz es el número de filas F_i linealmente independientes (e.d., que no se pueden poner como $F_i = \lambda_1 F_1 + \cdots + \lambda_m F_m$).
- Coincide con el número de columnas C_i lin.ind.
 - Cálculo del rango por Gauss-Jordan:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} =$$

Se hacen operaciones elementales por filas hasta hacer ceros debajo de la diagonal.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} \xrightarrow{F_2 - F_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 12 & -6 \end{pmatrix} \xrightarrow{F_3 + 3F_2}$$

Matrices y determinantes

David Orden

Curso cero:

David Orden Dep. Matemáticas UAH

Matrice

Definiciones Operaciones

Rango

Ejercicios

Determinante
$$2 \times 2 \text{ y } 3 \times 3$$

Propiedade

Inversa Rango

Rango Ejercio

Autoevaluació

Bibliografía y web

• El rango de una matriz es el número de filas F_i linealmente independientes (e.d., que no se pueden poner como $F_i = \lambda_1 F_1 + \cdots + \lambda_m F_m$).

• Coincide con el número de columnas C_i lin.ind.

• Cálculo del rango por Gauss-Jordan:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} =$$

Se hacen operaciones elementales por filas hasta hacer ceros debajo de la diagonal.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} \xrightarrow{F_2 - F_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 12 & -6 \end{pmatrix} \xrightarrow{F_3 + 3F_2}$$

$$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

Curso cero: Matrices y determinantes David Orden

David Orden Dep. Matemáticas UAH

Matrice

Definiciones Operaciones

Rango

Ejercicios

Propiedade

Invers

Rango Fiercio

Autoevaluació

Bibliografía y webs

El rango de una matriz es el número de filas F_i linealmente independientes (e.d., que no se pueden poner como F_i = λ₁F₁ + ··· + λ_mF_m).
Coincide con el número de columnas C_i lin.ind.

·

• Cálculo del rango por Gauss-Jordan:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} =$$

Se hacen operaciones elementales por filas hasta hacer ceros debajo de la diagonal. El número de filas no nulas será el rango.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} \xrightarrow{F_2 - F_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 12 & -6 \end{pmatrix} \xrightarrow{F_3 + 3F_2}$$

$$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ \end{pmatrix}$$

Curso cero: Matrices y determinantes David Orden

David Orden Dep. Matemáticas UAH

Matric

Definiciones Operaciones

Rango

Ljercicios

n × n
Propiedade

Inversa

Rango

Ejercicio

Autoevaluació

Bibliografía y webs

• El rango de una matriz es el número de filas F_i linealmente independientes (e.d., que no se pueden poner como $F_i = \lambda_1 F_1 + \cdots + \lambda_m F_m$).

• Coincide con el número de columnas C_i lin.ind.

Cálculo del rango por Gauss-Jordan:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} = 2$$

Se hacen operaciones elementales por filas hasta hacer ceros debajo de la diagonal. El número de filas no nulas será el rango.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} \xrightarrow{F_2 - F_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 12 & -6 \end{pmatrix} \xrightarrow{F_3 + 3F_2}$$

$$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \end{pmatrix}$$

Curso cero: Matrices y determinantes David Orden

David Orden Dep. Matemáticas UAH

Matrices

Definiciones Operaciones

Rango

Ljercicios

Inversa

Kango Ejercicio

Autoevaluació

Matrices Determinantes

Bibliografía y webs recomendadas

- El rango de una matriz es el número de filas F_i linealmente independientes (e.d., que no se pueden poner como $F_i = \lambda_1 F_1 + \cdots + \lambda_m F_m$).
- Coincide con el número de columnas *C_i* lin.ind.
 - Una matriz tiene inversa ⇔ tiene rango máximo.
 - Cálculo del rango por Gauss-Jordan:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} = 2$$

Se hacen operaciones elementales por filas hasta hacer ceros debajo de la diagonal. El número de filas no nulas será el rango.

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} \xrightarrow{F_2 - F_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \\ 0 & 12 & -6 \end{pmatrix} \xrightarrow{F_3 + 3F_2}$$

$$\sim \begin{pmatrix} 1 & 2 & 3 \\ 0 & -4 & 2 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Rango

Ejercicios

Matrices

Ejercicios:

Calcular $A \cdot B$ para las matrices

$$A = \begin{pmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 4 & 2 & 3 \\ 3 & 1 & 0 \\ 6 & -2 & 0 \\ 1 & 2 & 2 \end{pmatrix}$$

Calcular A · B para las matrices

$$A = \begin{pmatrix} 3 & 2 & 4 & 1 \\ 2 & 3 & 4 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ -4 & 2 \end{pmatrix}$$

Calcular la inversa de las matrices

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 5 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 2 \\ 3 & -2 & 1 \\ 2 & -1 & 0 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Matrices

D.C.

Operacione

Inversa Rango

Eiercicios

D-+----:---

Determinante

 $n \times n$

Propiedades

Inversa

Ejercici

Autoevaluación

Matrices

Bibliografía v we

Ejercicios:

Calcular el rango de las siguientes matrices

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 4 & 8 \end{pmatrix}, B = \begin{pmatrix} 1 & -4 & 2 & -1 \\ 3 & -12 & 6 & -3 \\ 4 & -2 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & 2 & -1 \\ 4 & 3 & -2 \\ 6 & 7 & -4 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

¿Cuáles de ellas tendrán inversa?

Curso cero: Matrices y

David Orden Dep. Matemáticas UAH

Matrices

Definicione

Inversa

Rango

Ejerci

Determinantes

2 × 2 y 3 ×

Propiedade

1 ropicuuu

Rango

Ejercic

Autoevaluació

Matrices

Bibliografía y web recomendadas

Determinantes

00101010 0010001110

001010 0010,0010

1001000 1000 01000 001001 1010001 000 1000 007 0100100 0100100 01000 1010100110 0100011100017 0010011110001 0100101 10100010010010

10011000101000100100

100110101

BINARY LETTER FROM GRANDWA

David Orden Dep. Matemáticas UAH

.

Definicione

Operacion

Invers

Rango

Fierci

Б. . .

2 × 2 y 3 × 3

 $n \times n$

Propiedades

Inversa

Rango

Ejercicio

Autoevaluación

Matrices

Bibliografía y web recomendadas

• Se define el determinante de una matriz 2 × 2 como:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

David Orden Dep. Matemáticas UAH

Rango

 $2 \times 2 y 3 \times 3$

Rango

Matrices

• Se define el determinante de una matriz 2 × 2 como:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

• Para una matriz 3 × 3:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

David Orden Dep. Matemáticas UAH

Matrices

Definiciones Operaciones Inversa

Ejercicio

Determinante

$$2 \times 2$$
 y 3×3

Propiedade

Inversa

Rango

Ejercicios

Autoevaluació

Matrices Determinante

Bibliografía y webs recomendadas • Se define el determinante de una matriz 2 × 2 como:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Para una matriz 3 × 3:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

David Orden Dep. Matemáticas UAH

Matricac

Definicion Operacion

Inversa Rango

Ejercici

Determinante

 $n \times n$

Inversa

Rango

Ejercicio

Autoevaluació

Matrices Determinante

Bibliografía y web recomendadas

• Se define el determinante de una matriz 2 × 2 como:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Para una matriz 3 × 3:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

David Orden Dep. Matemáticas UAH

Matrices

Matrices Definicion

Inversa

Rango Eiercic

Determinent

2 × 2 y 3 × 3

2 X 2 Y 3 .

Propiedade

Rango

Ejercicio

Autoevaluació

Matrices Determinante

Bibliografía y webs recomendadas • Se define el determinante de una matriz 2 × 2 como:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Para una matriz 3 × 3:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

David Orden Dep. Matemáticas UAH

$$2 \times 2 \text{ y } 3 \times 3$$

Matrices

• Se define el determinante de una matriz 2 × 2 como:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Para una matriz 3 × 3:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

• Se llama adjunto de a_{ii} a

$$A_{ij} = (-1)^{i+j} \cdot igg| egin{array}{c} \mathsf{menor} \\ \mathsf{complementario} \end{array} igg|$$

David Orden Dep. Matemáticas UAH

• Se define el determinante de una matriz 2 × 2 como:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Para una matriz 3 × 3:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

• Se llama adjunto de a_{ii} a

$$A_{ij} = (-1)^{i+j} \cdot egin{array}{c} \mathsf{menor} \\ \mathsf{complementario} \end{array}$$

• Así, para $A \in \mathcal{M}_{3\times3}$ desarrollando por la primera fila se tiene

$$\det A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}.$$

David Orden Dep. Matemáticas UAH

Matrico

Matrices

Operaciones Inversa

Ejercici

Determinante

Determinante $2 \times 2 \times 3 \times 3$

n × n
Propiedade

Inversa

Rango Fiercici

Autoevaluaciói Matrices

Bibliografía y web recomendadas • Se define el determinante de una matriz 2×2 como:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

Para una matriz 3 × 3:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} =$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

• Se llama <mark>adjunto</mark> de *a_{ij}* a

$$A_{ij} = (-1)^{i+j} \cdot egin{array}{c} \mathsf{menor} \ \mathsf{complementario} \end{array}$$

• Así, para $A \in \mathcal{M}_{3 \times 3}$ desarrollando por la primera fila se tiene

$$\det A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}.$$

• Análogamente, se puede desarrollar por cualquier fila o columna; det $A = a_{12}A_{12} + a_{22}A_{22} + a_{32}A_{32}$.

David Orden Dep. Matemáticas UAH

 $n \times n$

Rango

• Para una matriz $n \times n$, el determinante se calcula desarrollando por una fila o columna:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + \cdots + a_{1n}A_{1n}$$

David Orden Dep. Matemáticas UAH

 $n \times n$

• Para una matriz $n \times n$, el determinante se calcula desarrollando por una fila o columna:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + \cdots + a_{1n}A_{1n}$$

 Para hacer menos cálculos, conviene elegir la fila o columna que tenga más ceros.

David Orden Dep. Matemáticas UAH

 $n \times n$

• Para una matriz $n \times n$, el determinante se calcula desarrollando por una fila o columna:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + \cdots + a_{1n}A_{1n}$$

- Para hacer menos cálculos, conviene elegir la fila o columna que tenga más ceros.
- Ejemplo:

$$\begin{vmatrix} 2 & 3 & -1 & 1 \\ 1 & 2 & 0 & -3 \\ 4 & -1 & 2 & 5 \\ -3 & 1 & 0 & 2 \end{vmatrix} =$$

David Orden Dep. Matemáticas UAH

 $n \times n$

• Para una matriz $n \times n$, el determinante se calcula desarrollando por una fila o columna:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + \cdots + a_{1n}A_{1n}$$

- Para hacer menos cálculos, conviene elegir la fila o columna que tenga más ceros.
- Ejemplo:

$$\begin{vmatrix} 2 & 3 & -1 & 1 \\ 1 & 2 & 0 & -3 \\ 4 & -1 & 2 & 5 \\ -3 & 1 & 0 & 2 \end{vmatrix} = 140$$

David Orden Dep. Matemáticas UAH

Matrices

iviatrices

Definicione

Inversa

Rango

Fierci

.

2 × :

n × n

Propiedades

Inversa

Rango

Ejercicio

Δυτοεναμιασίά

Matrices

Determinant

Bibliografía y webs recomendadas • $\det A = \det A^t$.

David Orden Dep. Matemáticas UAH

Propiedades

Rango

Matrices

- $\det A = \det A^t$.
- Al intercambiar dos filas (o dos columnas) el determinante cambia de signo.

David Orden Dep. Matemáticas UAH

Propiedades

- $\det A = \det A^t$.
- Al intercambiar dos filas (o dos columnas) el determinante cambia de signo.
- Si se multiplica una fila (o columna) por un número, el determinante también se multiplica por ese número.

David Orden Dep. Matemáticas UAH

Propiedades

- $\det A = \det A^t$.
- Al intercambiar dos filas (o dos columnas) el determinante cambia de signo.
- Si se multiplica una fila (o columna) por un número, el determinante también se multiplica por ese número.
- Si una fila (o columna) es suma de otras, el determinante se descompone en suma de determinantes.

$$\begin{vmatrix} a_{11} + b_{11} & \cdots & a_{1n} \\ a_{21} + b_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} \end{vmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{vmatrix} + \begin{vmatrix} b_{11} & \cdots & a_{1n} \\ b_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ b_{m1} & \cdots & a_{mn} \end{vmatrix}$$

David Orden Dep. Matemáticas UAH

Rango

Propiedades

Rango

Matrices

• Si a una fila (o columna) se le suma otra multiplicada por un número, el determinante no varía.

a 21	 a _{1n} a _{2n}	$C_1 + kC_j$	$a_{11} + k \cdot a_{1j}$ $a_{21} + k \cdot a_{2j}$	• • •	a _{2n}
: a _{m1}	: : a _{mn}		$\vdots \\ a_{m1} + k \cdot a_{mj}$		

David Orden Dep. Matemáticas UAH

Propiedades

Matrices

• Si a una fila (o columna) se le suma otra multiplicada por un número, el determinante no varía.

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{vmatrix} \xrightarrow{C_1 + kC_j} \begin{vmatrix} a_{11} + k \cdot a_{1j} & \cdots & a_{1n} \\ a_{21} + k \cdot a_{2j} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} + k \cdot a_{mj} & \cdots & a_{mn} \end{vmatrix}$$

 Si una matriz tiene una fila (o columna) compuesta por ceros, su determinante es cero.

David Orden Dep. Matemáticas UAH

Propiedades

 Si a una fila (o columna) se le suma otra multiplicada por un número, el determinante no varía.

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \xrightarrow{C_1 + kC_j} \begin{bmatrix} a_{11} + k \cdot a_{1j} & \cdots & a_{1n} \\ a_{21} + k \cdot a_{2j} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} + k \cdot a_{mj} & \cdots & a_{mn} \end{bmatrix}$$

- Si una matriz tiene una fila (o columna) compuesta por ceros, su determinante es cero.
- Si una matriz tiene dos filas proporcionales, su determinante es cero.

David Orden Dep. Matemáticas UAH

Propiedades

 Si a una fila (o columna) se le suma otra multiplicada por un número, el determinante no varía.

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{vmatrix} \begin{vmatrix} c_{1+kC_{j}} \\ c_{1+kC_{j}} \\ \vdots \\ c_{m1+kC_{mj}} \end{vmatrix} \begin{vmatrix} a_{11} + k \cdot a_{1j} & \cdots & a_{1n} \\ a_{21} + k \cdot a_{2j} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} + k \cdot a_{mj} & \cdots & a_{mn} \end{vmatrix}$$

- Si una matriz tiene una fila (o columna) compuesta por ceros, su determinante es cero.
- Si una matriz tiene dos filas proporcionales, su determinante es cero.
- Si en una matriz una fila (o columna) es combinación lineal de otras, su determinante es cero.

$$F_i = \lambda_1 F_1 + \lambda_2 F_2 + \dots + \lambda_n F_n \Rightarrow \det A = 0$$

David Orden Dep. Matemáticas UAH

Propiedades

 Si a una fila (o columna) se le suma otra multiplicada por un número, el determinante no varía.

$$\begin{vmatrix} a_{11} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{vmatrix} \begin{vmatrix} a_{11} + k \cdot a_{1j} & \cdots & a_{1n} \\ a_{21} + k \cdot a_{2j} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{m1} + k \cdot a_{mj} & \cdots & a_{mn} \end{vmatrix}$$

- Si una matriz tiene una fila (o columna) compuesta por ceros, su determinante es cero.
- Si una matriz tiene dos filas proporcionales, su determinante es cero.
- Si en una matriz una fila (o columna) es combinación lineal de otras, su determinante es cero. $F_i = \lambda_1 F_1 + \lambda_2 F_2 + \cdots + \lambda_n F_n \Rightarrow \det A = 0$

de la diagonal.

David Orden Dep. Matemáticas UAH

Matrico

Definicion

Operacio

Inversa

Rango Eiercicios

2 × 2 y 3 × 3

n x n

Propiedade

Inversa

Inversa Rango

rango

Ejercicio

Autoevaluacion

Matrices

Bibliografía y webs recomendadas • Se define la adjunta de A a la matriz formada por los adjuntos (pincha para recordar); $adj(A) = (A_{ij})$.

David Orden Dep. Matemáticas UAH

NA - sections

iviatrices

Definiciones

Inversa

Kango

Ljereicios

Determinante

2 × 2 y 3

Propiedade

Propiedade

Inversa

Rango

Ejercicio

Autoevaluació

Matrices

- Se define la adjunta de A a la matriz formada por los adjuntos (pincha para recordar); $adj(A) = (A_{ij})$.
- La inversa también se puede calcular usando la adjunta:

$$A^{-1} = \frac{[\mathsf{adj}(A)]^t}{\det A}$$

David Orden Dep. Matemáticas UAH

Inversa

- Se define la adjunta de A a la matriz formada por los adjuntos (pincha para recordar); $adj(A) = (A_{ii})$.
- La inversa también se puede calcular usando la adjunta:

$$A^{-1} = \frac{[\operatorname{adJ}(A)]^t}{\det A}$$

$$\left(\begin{array}{cc} 1 & -2 \\ 3 & -5 \end{array}\right)^{-1} =$$

David Orden Dep. Matemáticas UAH

Inversa

- Se define la adjunta de A a la matriz formada por los adjuntos (pincha para recordar); $adj(A) = (A_{ii})$.
- La inversa también se puede calcular usando la adjunta:

$$A^{-1} = \frac{[\operatorname{adJ}(A)]^t}{\det A}$$

$$\begin{pmatrix} 1 & -2 \\ 3 & -5 \end{pmatrix}^{-1} = \frac{\begin{pmatrix} -5 & -3 \\ 2 & 1 \end{pmatrix}^{\frac{1}{2}}}{\frac{1}{2}} =$$

David Orden Dep. Matemáticas UAH

Matrices

Definicione

Operaciones

Rango

Ejercicio

Determinante

2 × 2 y 3

Propiedade

Inversa

Rango

Ejercicio

Autoevaluación

Matrices Determinant

Bibliografía y webs recomendadas

- Se define la adjunta de A a la matriz formada por los adjuntos (pincha para recordar); $adj(A) = (A_{ij})$.
- La inversa también se puede calcular usando la adjunta:

$$A^{-1} = \frac{[\operatorname{adJ}(A)]^t}{\det A}$$

• Ejemplos:

$$\begin{pmatrix} 1 & -2 \\ 3 & -5 \end{pmatrix}^{-1} = \frac{\begin{pmatrix} -5 & -3 \\ 2 & 1 \end{pmatrix}^{1}}{1} = \begin{pmatrix} -5 & 2 \\ -3 & 1 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

. . .

Definiciones

Inversa

Rango

2 × 2 y

n × n Propiedad

Inversa

Rango

Autoevaluación

Matrices Determinante

Bibliografía y webs recomendadas

- Se define la adjunta de A a la matriz formada por los adjuntos (pincha para recordar); $adj(A) = (A_{ij})$.
- La inversa también se puede calcular usando la adjunta:

$$A^{-1} = \frac{[\operatorname{adj}(A)]^t}{\det A}$$

$$\begin{pmatrix} 1 & -2 \\ 3 & -5 \end{pmatrix}^{-1} = \frac{\begin{pmatrix} -5 & -3 \\ 2 & 1 \end{pmatrix}}{1} = \begin{pmatrix} -5 & 2 \\ -3 & 1 \end{pmatrix}$$

$$\left(\begin{array}{ccc} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 3 \end{array}\right)^{-1} =$$

David Orden Dep. Matemáticas UAH

. . .

Definiciones

Inversa

Ejercic

2 × 2 y 3 × n × n

Propiedad Inversa

Rango

Ejercicio

Autoevaluaciór

Matrices Determinante

Bibliografía y webs recomendadas

- Se define la adjunta de A a la matriz formada por los adjuntos (pincha para recordar); $adj(A) = (A_{ij})$.
- La inversa también se puede calcular usando la adjunta:

$$A^{-1} = \frac{[\operatorname{adj}(A)]^t}{\det A}$$

$$\begin{pmatrix} 1 & -2 \\ 3 & -5 \end{pmatrix}^{-1} = \frac{\begin{pmatrix} -5 & -3 \\ 2 & 1 \end{pmatrix}^{1}}{1} = \begin{pmatrix} -5 & 2 \\ -3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 3 \end{pmatrix}^{-1} = \frac{\begin{pmatrix} 3 & -4 & -1 \\ -3 & 6 & 1 \\ -1 & 2 & 1 \end{pmatrix}}{\frac{2}{2}}$$

David Orden Dep. Matemáticas UAH

Maria

Definition

Operacione

Inversa

Kango

_,-----

n × n
Propieda

Inversa

Rango

Autoevaluación

Matrices

Bibliografía y webs recomendadas

- Se define la adjunta de A a la matriz formada por los adjuntos (pincha para recordar); $adj(A) = (A_{ij})$.
- La inversa también se puede calcular usando la adjunta:

$$A^{-1} = \frac{[\operatorname{adJ}(A)]^t}{\det A}$$

$$\begin{pmatrix} 1 & -2 \\ 3 & -5 \end{pmatrix}^{-1} = \frac{\begin{pmatrix} -5 & -3 \\ 2 & 1 \end{pmatrix}}{1} = \begin{pmatrix} -5 & 2 \\ -3 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & -1 \\ 1 & 0 & 3 \end{pmatrix}^{-1} = \frac{\begin{pmatrix} -3 & 6 \\ -1 & 2 \end{pmatrix}}{2}$$
$$= \begin{pmatrix} 3/2 & -3/2 & -1/2 \\ -2 & 3 & 1 \\ -1/2 & 1/2 & 1/2 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Matrica

Definicion

Definicion

Inversa

Rango

E:---:

2 × 2 y 3 ×

n × n Propiedades

Inversa

Rango

Ejercicio:

Autoevaluació

Matrices

Bibliografía y webs recomendadas • Se llama menor de orden k de A al determinante de una submatriz $k \times k$.

David Orden Dep. Matemáticas UAH

NA - A - C - - -

Definicione

Operacion

Inversa

Rango

Eioreia

Determinant

 $n \times n$

Propiedades

Rango

Eiercicio

Autoevaluacio

Determinante

- Se llama menor de orden k de A al determinante de una submatriz $k \times k$.
- El rango también se puede calcular usando menores: rango(A) = r si r es el mayor orden para el que existe un menor no nulo.

David Orden Dep. Matemáticas UAH

Matrices

Definicione

Operaciones

Inversa

Rango

Б. . .

 $n \times n$

Propiedade

Rango

Ejercicio

Autoevaluació

Matrices Determinante

- Se llama menor de orden k de A al determinante de una submatriz $k \times k$.
- El rango también se puede calcular usando menores: rango(A) = r si r es el mayor orden para el que existe un menor no nulo.
- Ejemplos:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} =$$

David Orden Dep. Matemáticas UAH

Matrico

Definiciones

Operaciones

Inversa

Rango

.

 $n \times n$

Inverse

Rango

Ejercicio:

Autoevaluació

Matrices Determinante

- Se llama menor de orden k de A al determinante de una submatriz $k \times k$.
- El rango también se puede calcular usando menores: rango(A) = r si r es el mayor orden para el que existe un menor no nulo.
- Ejemplos:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} = 2,$$
 porque det $A = 0$ y $\begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix} = -4 \neq 0.$

David Orden Dep. Matemáticas UAH

Matrices

Definicione

Operacio

Rango

Ejercicios

Propiedade

Inversa Rango

Eiercicio:

Matrices Determinantes

- Se llama menor de orden k de A al determinante de una submatriz $k \times k$.
- El rango también se puede calcular usando menores: rango(A) = r si r es el mayor orden para el que existe un menor no nulo.
- Ejemplos:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} = 2,$$
 porque det $A = 0$ y $\begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix} = -4 \neq 0.$

rango
$$\begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & -1 & 1 & 2 \\ 3 & 2 & -1 & 1 \\ 1 & 3 & 2 & -2 \end{pmatrix} =$$

David Orden Dep. Matemáticas UAH

Matri

Definiciones

Operad

Rango

Ejercicios

$$n \times n$$

Propiedade

Rango

Ejercicios

Autoevaluación

Matrices Determinantes

- Se llama menor de orden k de A al determinante de una submatriz k x k.
- El rango también se puede calcular usando menores: rango(A) = r si r es el mayor orden para el que existe un menor no nulo.
 - Ejemplos:

rango
$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & -2 & 5 \\ -1 & 10 & -9 \end{pmatrix} = 2,$$
 porque det $A = 0$ y $\begin{vmatrix} 1 & 2 \\ 1 & -2 \end{vmatrix} = -4 \neq 0.$

rango
$$\begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & -1 & 1 & 2 \\ 3 & 2 & -1 & 1 \\ 1 & 3 & 2 & -2 \end{pmatrix} = 3,$$
porque det $A = 0$ y $\begin{vmatrix} 2 & 1 & 0 \\ 1 & -1 & 1 \\ 3 & 2 & -1 \end{vmatrix} = 2 \neq 0.$

David Orden Dep. Matemáticas UAH

Matriaga

Definicione

Operacion

Rango

Ejercici

Determinante

2 × 2 .. 3 × 3

 $n \times n$

Propiedade

Rango

Ejercicios

Autoevaluac

Matrices Determinante

Bibliografía y webs

Ejercicios:

Calcular
$$\begin{vmatrix} 1 & 2 & -1 & 0 \\ 2 & 1 & 4 & 2 \\ 3 & -1 & -2 & 1 \\ -1 & 0 & 4 & -3 \end{vmatrix}$$

Si $A \in \mathcal{M}_{k \times k}$ con k par, ¿qué relación hay entre det A y det(-A). ¿Y si k es impar?

Calcular, usando determinantes, la inversa de las matrices

$$A = \left(\begin{array}{ccc} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 5 & 2 \end{array}\right), B = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 3 & -2 & 1 \\ 2 & -1 & 0 \end{array}\right)$$

David Orden Dep. Matemáticas UAH

Matrices

D C . .

Definicione

Inverse

Rango

Eiercicios

Determinante

2 × 2 .. 3 × 3

 $n \times n$

Propiedades

Inversa Rango

Ejercicios

•

Autoevaluació

Matrices

Determinantes

Bibliografía y webs recomendadas

Ejercicios:

Calcular, usando determinantes, el rango de las siguientes matrices

$$A = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 2 & 4 \\ 0 & 4 & 8 \end{pmatrix}, B = \begin{pmatrix} 1 & -4 & 2 & -1 \\ 3 & -12 & 6 & -3 \\ 4 & -2 & 0 & 2 \\ 0 & 1 & 3 & 1 \end{pmatrix},$$

$$C = \begin{pmatrix} 1 & 2 & -1 \\ 4 & 3 & -2 \\ 6 & 7 & -4 \end{pmatrix}, D = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Matrice

Operacione

Inversa

Rango

Determinante

Determinante

2 X 2 y

Propiedades

Inversa

Rango

Autoevaluación

Matrices

Bibliografía y webs recomendadas

Autoevaluación

Antes de seguir, intenta resolver los ejercicios propuestos. Una vez que los hayas intentado, podrás comprobar tus resultados con las soluciones que aparecen a continuación.

David Orden Dep. Matemáticas UAH

Matrice

Definicione

Operacio

Rango

Ejercicios

Determinante

2 \times 2 y 3 \times

Propiedade:

Inversa

Rango

Ejercicio

Autoevaluació

Matrices

Determinante

Bibliografía y webs recomendadas

Soluciones matrices:

$$\left(\begin{array}{ccc} 0 & 8 & 7 \\ 11 & 3 & 4 \end{array}\right)$$

Imposible, el número de columnas de *A* no coincide con el número de filas de *B*.

$$A^{-1} = \begin{pmatrix} -7 & 1 & 2 \\ 5 & -1 & -1 \\ -2 & 1 & 0 \end{pmatrix}, B^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 & 4 \\ 2 & -4 & 5 \\ 1 & 1 & -2 \end{pmatrix}$$
 (a la izquierda queda $3 \cdot I_3$ en lugar de I_3 , así que hay que

dividir la matriz de la derecha por 3).

David Orden Dep. Matemáticas UAH

Matrices

Definicione Operacione

Inversa Rango

Ejercicios

Determinante

2 × 2 y 3 ×

Propiedade

Inversa

Rango Eiercicio

Autoevaluación

Matrices Determinantes

Determinante

Bibliografía y webs recomendadas

Soluciones determinantes:

- -142
- **2** 41

Como se multiplican por -1 todas las filas (o columnas), el determinante se multiplica por $(-1)^k$, así que para k par $\det A = \det(-A)$, y para k impar $\det A = -\det(-A)$.

$$A^{-1} = \begin{pmatrix} -7 & 1 & 2 \\ 5 & -1 & -1 \end{pmatrix}, B^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -2 & 4 \\ 2 & -4 & 5 \end{pmatrix}$$

David Orden Dep. Matemáticas UAH

Matrices

Definicione

Inversa

Rango

Determinante

Determinante

 $n \times n$

Propiedade

Inversa

Rango

Ejercicios

Autoevaluació

Matrices Determinant

Bibliografía y webs recomendadas

- Matemáticas Bachillerato 2, Tecnología, Esther Bescós y Zoila Pena, Ed. Oxford, 1998.
- Diccionario de términos matemáticos.
- Página muy completa sobre matrices y determinantes.
- Más sobre matrices y determinantes.