1. Determinar todos los números complejos soluciones de la ecuación $x^3+1=0$.

Solución:
$$\{x=-1\}$$
, $\{x=\frac{1}{2}-\frac{1}{2}i\sqrt{3}\}$, $\{x=\frac{1}{2}+\frac{1}{2}i\sqrt{3}\}$

2. Simplificar la siguiente expresión trigonométrica:

$$2 + \cos 2x - \frac{2}{1 + \lg^2 x}$$

Solución: La expresión es constante. Vale 1 para todos los valores de x.

3. Expresar en forma módulo-argumento los siguientes números complejos:

$$z_1 = 1 - \sqrt{3}i \qquad z_2 = 2 + 2i$$

Solución: Llamando r_i y θ_i , respectivamente, al módulo y al argumento de z_i ,

$$r_1 = 2$$
, $\theta_1 = \frac{5\pi}{3}$ $r_2 = 2\sqrt{2}$, $\theta_2 = \frac{\pi}{4}$

4. Factorizar el polinomio $p(x) = 2x^3 + 6x^2 - 8$.

Solución: $p(x) = 2(x-1)(x+2)^2$

5. Determinar todos los números reales que verifican las siguientes desigualdades:

a)
$$(x-2)^2 \ge 1$$
 b) $\left| \frac{x}{2+x} \right| < 1$

Solución: (a) $\{x \le 1\} \cup \{3 \le x\}$ (b) $\{-1 < x\}$

6. ¿Cuántos saludos se cruzan entre un grupo de 10 amigos que se ven después de unas vacaciones?

Solución: $\binom{10}{2} = 45$.

7. Escribir el desarrollo de $(1+x)^5$.

Solución: $(1+x)^5 = x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1$

8. Supongamos que n es un número natural. La proposición – n es par si, y sólo si, n^2 es par – ¿es verdadera o falsa? Justifica la respuesta.

Solución: Es verdadera. Si n es par, se puede escribir n=2k, luego $n^2=2^2k^2$ es par (múltiplo de dos). Además si n es impar, entonces se puede escribir n=(2k+1), luego $n^2=2(2k^2+2k)+1$ también es impar. Hemos probado que los pares tienen cuadrado par y los impares tienen cuadrado impar, de donde se deduce el resultado.

- 9. Considera la proposición siguiente: si n > 10, entonces $n! > 2^{2n}$.
 - (a) Identifica la hipótesis y la tesis.
 - (b) Utilizando sólo la información de la proposición si n > 10, entonces $n! > 2^{2n}$ –,
 - i. si te dicen que un número k verifica $k! > 2^{2k}$, ¿qué puedes decir de k?
 - ii. £y si te dicen que $k! < 2^{2k}$?

Solución:

- (a) La hipótesis es si n > 10 –; la tesis es $n! > 2^{2n}$ –.
- (b.i) Nada. k puede ser mayor que 10, o no $(k = 9 \text{ también verifica que } k! > 2^{2k})$.
- (b.ii) Que $k \le 10$. (Pues si k > 10, tendríamos $k! > 2^{2k}$).
- 10. Dado el sistema de ecuaciones

$$\begin{cases} x - y = 1 \\ x + 2y = -a \\ 5x + ay = 1 \end{cases}$$

determinar los valores de a para los cuales el sistema es compatible determinado y encontrar la solución para dichos valores de a.

Solución: El sistema es compatible determinado para $a=1,\,a=-7$. Para a=1 la solución es $x=\frac{1}{3},\,y=-\frac{2}{3}$. Para a=-7 la solución es $x=3,\,y=2$.

11. Hallar la ecuación de la recta que pasa por (-1, -2) y es perpendicular a la recta que pasa por (-2, 3) y por (-5, -6).

Solución: La recta es x + 3y + 7 = 0.

12. Hallar las coordenadas del vértice de la parábola de ecuación x - 2x - 12y + 25 = 0.

Solución: El vértice de la parábola es el punto (x,y)=(1,2)

13. Resolver la ecuación: $\sqrt{2x+7} = \sqrt{x} + 2$.

Solución: Las soluciones de la ecuación son $\{x = 1\}, \{x = 9\}.$

14. ¿Sabrías decir, sin usar la calculadora, cuál de los números $\sqrt[3]{2}$ y $\sqrt[4]{3}$ es mayor?

Solución: El número $\sqrt[4]{3}$ es más grande que $\sqrt[3]{2}$.

15. Encontrar todas las soluciones de $3\cos^2 x = \sin^2 x$ con $0 \le x < 2\pi$.

Solución: La ecuación tiene cuatro soluciones, a saber: $x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$.

16. Resolver la ecuación $\log_4 y = -\frac{3}{2}$.

Solución: La solución es $y = \frac{1}{8}$.

17. Resolver la ecuación $5^{x+1} + 5^x = 750$.

Solución: La solución es x = 3.

18. Escribir la ecuación de la circunferencia con centro en (3,4) y radio 5.

Solución: La ecuación de la circunferencia es $(x-3)^2 + (y-4)^2 = 25$.

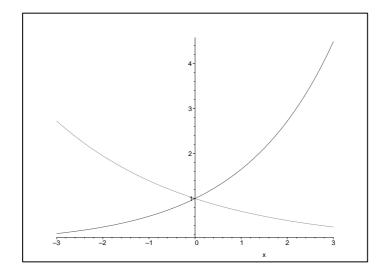
19. Hallar la ecuación de la recta tangente a la circunferencia $x^2 + y^2 - 2x + 8y - 23 = 0$ en el punto (3, -10).

Solución: La ecuación de la recta tangente es x - 3y - 33 = 0.

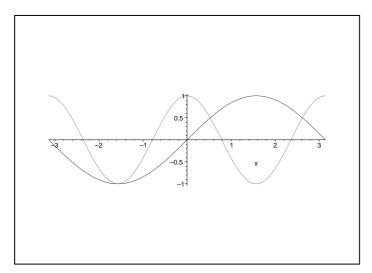
20. Hallar las coordenadas del centro de esta elipse: $x^2 + 4y^2 - 6x + 32y + 69 = 0$

Solución: El centro de la elipse es el punto (3, -4).

21. Representar conjuntamente las gráficas de las funciones $f(x)=e^{3x}$ y $g(x)=e^{-2x}$.



22. Representar conjuntamente en el intervalo $[-\pi,\pi]$ las funciones $f(x)=\sin x$ y $g(x)=\cos 2x$.



23. Calcular $\lim_{x\to 0} \frac{\sin x}{2x}$.

Solución: $\frac{1}{2}$.

24. Sea $f(x) = \operatorname{sen}(\ln(1+x^2))$. Calcular f'(x).

Solución: $f'(x) = \frac{2x\cos(\ln(1+x^2))}{1+x^2}$.

25. Calcular $\int xe^{2x} dx$.

Solución: $1/2 xe^{2x} - 1/4 e^{2x} + C$.